
Signaling and Operating System Support for Native-Mode ATM
Applications

R. Sharma (rosens@cs.stanford.edu)

S. Keshav (keshav@research.att.com)

AT&T Bell Laboratories

600 Mountain Avenue, Murray Hill, NJ 07974, USA

Abstract

Applications communicating over connectionless networks, such
as IP, cannot obtain per-connection Quality of Service (QoS)
guarantees. In contrast, the connection-oriented nature of the
ATM layer and its per-virtual-circuit QoS guarantees are visible
to a native-mode ATM application. We describe the design and
implementation of operating system and signaling support for
native-mode applications, independent of the semantics of the
protocol layers or of the signaling protocol. The work was done
in the context of a Unix-like operating system and the Xunet 2
wide-area high-speed ATM network. The IPC-based interface
between an application and the signaling entity allows processes
to request parameterized virtual circuits, and the signaling-kernel
interface allows resources to be reclaimed from prematurely ter-
minating processes. We also built a simple encapsulation layer
over raw IP that allows any host with IP access to send AAL
frames into the wide-area network with little performance degra-
dation. Our design makes it simple to port existing TCP/IP socket
applications to a native-mode ATM protocol stack and also
enables interoperation of existing IP networks with our ATM net-
work. Our experience has been positive - the design is robust, eas-
ily extendible and scales well with the number of open connec-
tions.

1. Introduction

Much current research in ATM networks has been at the
datalink and physical layers of the protocol stack; the higher lay-
ers are typically assumed to implement the IP and TCP protocols.
Since IP is connectionless, and it logically multiplexes TCP con-
nections, it is impossible to specify per-connection Quality of Ser-
vice (QoS) requirements, even though these can be provided by
the ATM network. We would like to present the connection-
_ ____________________

oriented nature and the QoS guarantees provided by ATM to
applications. We call a protocol stack that provides these features

APPLICATION

DATALINK

NETWORK

TRANSPORT

PRESENTATION
S
I
G
N
A
L
L
I
N
G

VCI

PHYSICAL

a native-mode ATM stack (Figure 1).

Figure 1: Overview of the native mode stack.

We view the design of a native-mode stack as having three
independent components: semantics, implementation and support.
The semantics of the stack specifies the abstract functionality pro-
vided by each layer, including signaling. An implementation is
an instantiation of these semantics. Finally, the stack needs some
support from the operating system (such as for actually moving
data, notification of process termination etc.). In this paper, we
present a scheme for the support of a native mode stack indepen-
dent of its semantics or the details of its implementation. Thus,
for example, we describe how an application may specify a QoS
to the signaling entity, but we do not discuss the form that this
specification takes, or how this specification maps to specific OS
and network scheduling policies.

The semantics of the native mode stack are described in
[12]. The key ideas here are that the stack has no logical multi-
plexing, and there is no duplication of AAL functionality in the



higher layers. A non-multiplexing protocol stack has several
advantages over a conventional multiplexing stack [9]. First,
per-application QoS requirements can be communicated both to
the network and the local operating system, allowing intelligent
scheduling of critical resources. Second, there are fewer
multiplexing/demultiplexing overheads (since each demultiplex-
ing point must compute a hash function). Third, the Virtual Cir-
cuit Identifier (VCI) provides a single index into a table of proto-
col control blocks, considerably simplifying the software struc-
ture.

We did our work in the context of the Silicon Graphics Inc.
IRIX 4.0.1 kernel and the Xunet II wide area ATM network [10].
IRIX is a System V variant of Unix, with provision for BSD sock-
ets [13]. XUNET II is an experimental wide-area ATM network
that serves as a testbed for research on data networking. The net-
work has connections to AT&T Bell Laboratories in Murray Hill,
New Jersey, and to four universities: the University of California
at Berkeley, the University of Illinois at Urbana-Champaign, the
University of Wisconsin at Madison, and Rutgers University in
New Brunswick, New Jersey. Long distance transmission is based
on ATM using DS3 facilities (at 45Mbps) as well as optically
amplified lines operating at 622 Mbps. Xunet II supports IP-
over-ATM and quite a bit of the traffic over Xunet II is generated
from IP-multicast based multimedia applications.

2. Scope of Our Work

IRIX provides a standard method for implementing a pro-
tocol stack inside the kernel using a BSD-style protocol family
abstraction [13]. A protocol stack implementing this abstraction
can access the BSD socket and device driver interfaces. When we
began our work, the Xunet IRIX kernel already implemented a
protocol family called PF_XUNET that provided simplex virtual
circuits. A socket bound to this family allowed users to access
the proprietary Hobbit ATM host-interface board [2] via the Orc
device driver. There was also a daemon that implemented a pro-
prietary signaling protocol, thus allowing an ATM endpoint to set
up a simplex switched virtual circuit to any ATM destination on
Xunet. However, there were two limitations. First, in order to set
up a switched virtual circuit, an application had to be linked and
loaded with the signaling entity. This was not acceptable for rea-
sons of robustness and security. Second, switched virtual circuits
were available only between ATM endpoints, that is, workstations
with the Hobbit ATM host-interface card. Since Xunet only has
eight of these, this limited the scope of the network.

In our work, we extended the existing infrastructure in
three ways. First, we allow any application to make RPC-like
calls on the signaling software in order to set up and tear down
simplex calls. Thus, the application does not have to be compiled
in with the signaling entity. Second, we allow any endpoint with
IP connectivity to get access to the ATM network by encapsulat-
ing AAL frames in IP packets. This lets us to move quickly and
easily towards the goal of ‘ATM Everywhere’ [14]. Third, we
extended the signaling mechanism to carry a QoS string from a
client to a server, and the negotiated (possibly modified) QoS
reply back to the client. QoS negotiation is proxied to the IP-
connected endpoints. In the rest of the paper, we describe how
these changes were made.

A note on terminology: We call machines with an ATM
interface routers, since they perform the IP routing function when
providing IP service on Xunet. Machines that do not have an

ATM interface are called hosts. If a call originates from machine
A, via routers B and C to machine D, we call A the host, B the
router, C the remote router, and D the remote host.

3. Services

The first step in the design process was to determine what
functionality should be provided to applications by our exten-
sions. We classified applications into servers and clients. Servers
should be able to register themselves with their local signaling
entity. For example, a file server might advertise the name "file-
service" with the signaling entity on host with ATM address
"mh.rt".

A client application that wanted to access a file on this
server would request the local signaling entity to initiate a con-
nection to <"mh.rt", "file-service", QoS>. Here, QoS is a struc-
ture that represents the quality of service that the client wants
from the network, such as <service class, bandwidth> as
described in Reference [17]. In this paper, we will treat this struc-
ture as an uninterpreted string. Note that the client-to-server con-
nection is simplex, so in our example, the server application
would have to establish a return connection to actually return a
file to the client. In addition to registering service names, and ini-
tiating connections to services, we wanted to allow clients and
servers to cancel any outstanding requests.

The second set of functions extends native mode support to
hosts without ATM host interfaces. We wanted to allow any host
with IP connectivity to a router to be able to make requests to an
Xunet signaling entity. Further, such hosts should be able to send
and receive data on PF_XUNET sockets. Data sent over the IP
path does not obtain any QoS guarantees - we view this strictly as
a migration path to allow hosts without ATM host interfaces to
access services on ATM networks.

4. Design Objectives

While meeting the service objectives in Section 3, we had
the following design goals in mind.

Ease of modification and extendibility: We wanted to be able to
modify the signaling protocol and applications without
having to reboot the kernel. Since Xunet is an experimental
network this was an important consideration.

Robustness: The extensions should work correctly independent
of the behavior of the application programs. We did not
want to crash the signaling entity or the kernel because of a
misbehaving application. Thus, the system should protect
itself from programs that crash, are malicious, or hold a
half-open connection, i.e. to an application on a remote site
that has failed.

Scaling: The number of active native mode ATM connections at
an endpoint should not be limited by the design.

Frugal use of resources: Our extensions should not be a drain on
the memory or CPU resources of an end point or the net-
work. In particular, if an application reserved any
resources and then crashed, the signaling protocol should



detect this and release any resources bound to that applica-
tion throughout the network.

QoS Negotiation: Applications should be able to specify and
negotiate their QoS requirements when setting up a con-
nection. This QoS specification can be used for scheduling
critical resources at endpoints and switches in the network.
Of course, if ATM data is encapsulated in IP, no QoS
claims can be made for traffic traversing the IP internet.

Orthogonality of implementation: Signaling and OS support
should not make any assumptions about the functionality
implemented by the protocol stack. This would allow us to
experiment with different protocols in the stack (for exam-
ple, implementing different congestion control schemes)
without changing the support functions.

5. Major Design Decisions

The design considerations above led to some design deci-
sions, which we discuss in this section.

5.1. Signaling entity in user space

The first major decision (which predates our work) was to
implement signaling in user space, rather than in the kernel. In
our experience, code in user space is far easier to develop and
modify. Signaling state information is easily available and can be
used by network management software. This decision does not
have a severe performance overhead. First, note that signaling is
invoked only during call setup, and does not impact the speed of
data transfer. Second, the signaling protocol has to interact with
the application in user space anyway (see Section 7.1), and so
crossing the user-kernel boundary is unavoidable whether signal-
ing is in user space or in the kernel. (However, with a user-space
implementation, there would be four context switches, instead of
two with an in-kernel implementation.) Third, while there is a
gain in performance from an in-kernel implementation when a
user process terminates abnormally, since the kernel can hand the
termination message to the signaling entity without crossing the
user-kernel boundary, this is not the common case. Keeping these
costs and benefits in mind, we feel that the design objectives
weigh the decision in favor of an implementation in user space.

5.2. TCP/IP sockets for application-signaling interface

The application-signaling interface allows clients to
request a channel to a server from the signaling entity, and servers
to register themselves. The traditional way of implementing this
interface would be as a parameter to the connect or bind sys-
tem call. The problem is that we would like to support QoS
parameters that are not only passed into the kernel but also need
to be negotiated with the peer endpoint and then passed back to
the application. If QoS parameters are passed as part of the
address structure or as a socket option, this would make QoS
negotiation cumbersome (see Reference [4]).

Further, we wanted to allow an application on any host
with IP connectivity to a router to be able to request a channel
from the signaling entity. Since we had already decided to place
signaling in user space, given these two requirements, we decided
that applications should communicate with the signaling entity
using inter-process communication (IPC) instead of system calls.

We considered both BSD sockets and ANSA [1] RPCs for IPC.
We wanted the IPC facility to be easy to use, ubiquitously avail-
able, and reliable. This ruled out ANSA and UDP, so we used
TCP/IP for IPC, in essence building a special-purpose RPC facil-
ity.

5.3. Pseudo-device to kernel for exchanging state information

There are three situations in which the signaling entity
needs to learn about application state, or inform an application
about a change in network state.

• An application that was using a VCI terminated and the
corresponding connection needs to be torn down.

• A connection was requested and established but the
requesting process terminated before it could use it.
Again, the connection has to be torn down.

• A connection was closed at the remote end. The signaling
entity should inform the application at the local end that
the connection was closed.

One approach we considered was to poll each client and
server application and keep track of state information explicitly.
While this would allow the signaling entity to know about process
state, communicating network state to the application becomes
hard, and would probably need a signal handler in every applica-
tion. We decided that this was too cumbersome. Instead, note
that process state information is easily available inside the kernel,
and it is relatively simple to ask the kernel to modify socket state
as the network state changes. Thus we decided that the informa-
tion exchange about process and network state would be mediated
by the kernel.

The mechanism to be used for communicating between the
signaling entity and the kernel could have been either a ’special’
socket or a pseudo device. Both allow two-way asynchronous
communication, and have similar implementation complexity.
Since we had source code for a pseudo-device already, we
decided in its favor. The pseudo-device is used only for user to
kernel space communication - communication between peer sig-
naling entities uses a native-mode Permanent Virtual Circuit.

5.4. Link remote hosts with IP encapsulation

We could have moved data from the PF_XUNET protocol
stack on a host to a router by setting up a proxy connection at any
of the datalink, network, transport or application layers. Effi-
ciency requires this connection to be as low in the protocol stack
as possible. If we restricted hosts to ones that are on the same
physical network as a router, then we could have modified the
Ethernet or FDDI device driver to set up a proxy datalink layer
connection with a new datalink protocol type. But this approach
has the drawback that the source code for device drivers is neither
easily available nor easily modifiable.

Instead, we decided to define a new encapsulation protocol
as a raw protocol over IP. This allows PF_XUNET data (unseg-
mented frames without the AAL5 trailer) to be forwarded across
an arbitrary internetwork without sacrificing too much perfor-
mance. As a further advantage, adding a new protocol over IP to
most UNIX-like kernels takes little effort. Though encapsulation
above TCP is even easier, this is not only inefficient, but also
could cause complex interactions between PF_XUNET flow con-
trol and TCP flow control, which we would much rather avoid.



Encapsulation above UDP buys us little functionality for the effi-
ciency loss, and also was rejected.

Xunet implements a minor variant of the AAL5 adaptation
layer, which guarantees that the receiving AAL can detect out of
order frames and cell loss within a frame. We wanted to preserve
these two guarantees for the path over IP. Since the encapsulation
protocol does not segment AAL5 frames cell loss within a frame
is not possible. All the encapsulation header needs to do is to
detect out of order frames, which we do using a sequence number
field.

6. Implementation

Host Router

User

Kernel

Figure 2: Overall design

In this section, we sketch out the implementation of the
design discussed above (Figure 2). The major components in our
implementation are the PF_XUNET protocol stack which actually
implements the native-mode stack semantics, and the signaling
entity on the router (called sighost). A single sighost
serves applications running on the router as well as any number of
applications running on hosts connected over IP. The
/dev/anand pseudo-device provides the interface between the
signaling-entity and the kernel. † A small client and server stub,
(called anand client and anand server respectively)
relay messages between the host kernel and sighost. Finally,
the PROTO_ATM protocol provides ATM
encapsulation/decapsulation as well as virtual circuit switching in
the router kernel. In order to simplify the communication
between a client or server application and sighost, we provide
_ ____________________
† In honor of the evergreen star of the Indian screen, Dev Anand.

a library (marked library). The ATM host-interface on the router
is called the Hobbit host interface, and it is controlled by the Orc
device driver.

The overall flow of control is as follows. A server program
on a host or router registers itself with sighost and awaits calls
from a client. A client application uses the user library to contact
the nearest sighost and requests a connection with a particular
QoS to a destination and service name. This is then routed to the
server, which is free to accept or deny the call and also modify the
QoS parameters. The modified QoS and the accept/deny decision
is returned to the client. Once the call is set up, data is sent from
the client to the server using a PF_XUNET socket, possibly with
IP encapsulation of AAL frames.

7. Implementation Details

In this section, we describe the details of the implementa-
tion sketched out in Section 6. The signaling entity at the router is
central to our design. It only acts in response to messages
received from the user library, the local or remote kernel, or the
peer signaling entity. Thus, we describe our implementation in
terms of these message exchanges.

7.1. Signaling-Application Interface

All applications are expected to use the user library to
interact with the signaling entity. We first consider the messages
exchanged by the signaling entity and a server application (see
Figure 3). A server sends an EXPORT_SRV message when it
wishes to advertise a service name. This message contains the
port number on which the server will be listening to be informed
of incoming requests from a remote client. The signaling entity
acknowledges this message with a SERVICE_REGS message.
When the signaling entity receives a call from its peer, it notifies
the server with an INCOMING_CONN message.

In order to provide a measure of security, the
INCOMING_CONN message carries an identifier, or cookie with
it. A cookie is a 16 bit capability that gives the holder the right to
access a socket bound to a particular VCI. sighost maintains
a per-VCI table of cookies. When an endpoint does a connect
or an accept on a socket, it must supply the cookie provided to
it during call setup. The PF_XUNET socket layer passes up the
cookie and VCI to sighost for these two calls, and sighost
can then authenticate the call. If authentication fails, the call is
torn down, and the socket marked unusable. A malicious process
on the server machine cannot access a VCI opened to a server,
since it would not be able to guess the cookie. A similar cookie is
handed to the client as discussed below, and prevents unautho-
rized clients from communicating with a server. A cookie can be
handed to a child of the server application or any third party.
Cookies last for the lifetime of a connection, and are lost due to
termination of an application, its peer or an intermediate router.

The INCOMING_CONN message also carries the QoS
requested by the client. The server can now accept the connection
by sending an ACCEPT_CONN message carrying the modified
QoS that is acceptable to the server. If a server does not want to
accept the call, it sends a REJECT_CONN message instead. The
signaling entity replies to an ACCEPT_CONN message with a
VCI_FOR_CONN message containing the VCI for the connec-



tion.

Figure 3: Messages exchanged when an echo server registers itself

We now discuss the messages exchanged between a client
application and the signaling entity (see Figure 4). A client sends
a CONNECT_REQ message to the signaling entity when it
wishes to connect to a server. It has to specify the destination, the
service name, the QoS required and the port on which it should be
informed about connection establishment or rejection (the port
number is used only to support our RPC-like mechanism). The
server replies to a CONNECT_REQ message with a REQ_ID
message. This has a cookie identifying the connection that will be
established on the client’s behalf. When the connection is actu-
ally established, a VCI_FOR_CONN message is sent to the client
with the modified QoS and the VCI for the connection. A client
may cancel its connection request with a CANCEL_REQ mes-
sage.

7.2. Signaling-Kernel Interface

This interface is implemented by the /dev/anand
pseudo-device and the anand client-server pair. The pseudo-
device is implemented as a character device and the client and
server communicate using TCP/IP sockets. A call downwards is
made when sighost receives a termination indication from a
peer, or authentication on a socket fails, and sighost needs to
inform the kernel. sighost sends a message to anand
server which either does a write on the router’s pseudo-device,
or passes it on to anand client which then does a write on
the host’s /dev/anand/ pseudo-device. In either case, the
pseudo-device’s write routine calls the socket layer’s soisdis-
connected routine, marking the socket as being unusable.

The kernel passes messages upwards when a process ter-
minates, or when it binds or connects to a PF_XUNET socket.
The termination indication is needed to allow sighost to
inform the remote router (or host) that the client (or server) no
longer exists, and the connection can be torn down. The bind or
connect indication is needed since a process might request a VCI,
but not use it, or terminate before binding (resp. connecting) to it.

Since no bind (resp. connect) occurred, the kernel will not pass a
termination message to sighost on process termination, and
network resources would stay blocked indefinitely. To prevent
this, sighost keeps a per-VCI timer that is loaded when a VCI
is handed to an application. If no bind (resp. connect) indication
is received before timeout, the connection is torn down.

Figure 4: Messages exchanged when a client establishes a call

Messages from the kernel are queued in the read queue of
the pseudo-device. The device supports the select() system
call. Thus, anand server (or anand client on a host)
simply blocks on select(), and when unblocked, passes the
message on to sighost (via anand server, if on a host).

7.3. Signaling Entity Internal State

As the messages described in Sections 7.1 and 7.2 are pro-
cessed, sighost maintains internal state in one of five lists.
The service_list maps service names to server ports. This list is
looked up when an incoming call arrives. The outgoing_requests
list stores client requests waiting for a reply from a server. This
allows the sighost-client interface to be non-blocking. The
incoming_requests list stores connections awaiting acceptance or
rejection by the server associated with the specified service name.
This is symmetric to the outgoing-requests list. The
wait_for_bind list identifies connections that have been estab-
lished by the signaling entity, but have not yet been bound to by
an application. The VCI_mapping list contains the current set of
VCIs that have been bound and their corresponding sockets. If
sighost receives a close message from its peer, this list is used
to inform the kernel to mark the socket as disconnected.

7.4. AAL over IP

We designed a way to carry ATM data by encapsulating it
in IP, thus allowing arbitrary IP hosts to send AAL frames into
Xunet. In order to proxy signaling at the host, we could have run
a copy of sighost at both the router and a host. However, this
would require quite a few changes to sighost, since peer



sighosts would need to communicate information such as IP
forwarding addresses between themselves. Instead, sighost
runs only on the router, and the anand client-server pair manage
IP specific information (described below).

Data written by a client to a PF_XUNET socket is encap-
sulated in an IP packet and sent to an Xunet router. Here, the
AAL5 trailer is added, and the AAL5 frame is segmented into
cells and sent over Xunet to a remote router. The remote router
re-encapsulates the data in IP and sends it to the server on a
remote host, where it appears at a receiving PF_XUNET socket.
We now describe the details of this scheme.

We first discuss the implementation at a host. Note that
signaling messages from the user library to sighost are sent
over TCP/IP, so there is no change to the user library. We modi-
fied the host kernel in two ways (see Figure 2). First, we added
the /dev/anand pseudo-device, the PF_XUNET protocol fam-
ily and the Orc device driver to the kernel. As in a router, writes
to a PF_XUNET socket are handed to the Orc device driver
(which would normally control the Hobbit host interface), and
reads on the socket are translated to reads on the device driver.
(Since the Hobbit board computes AAL5 trailers, the data passed
down from the Orc on a send is simply a pointer to an mbuf
chain, which is the same as the interface to raw IP.) Second, we
added an encapsulation/decapsulation protocol layer (marked
PROTO_ATM) over a raw IP socket. The device driver’s output
routine calls the encapsulation routine and its input routine reads
from the decapsulation routine. Thus, the existing PF_XUNET
implementation on a router could be ported to a non-router host
with no change, other than to replace calls from the device driver
to the Hobbit board with calls to the encapsulation/decapsulation
layer.

The encapsulation layer attaches a header to the data, and
puts it in the data portion of a IP packet. The header has three
fields:

Source Address ATM address of the sending node
Sequence Number To detect out-of-order packets
VCI VCI on which to send the encapsulated data_ ____________________________________________________





_ ____________________________________________________





We do not currently have a header checksum field, since our IP
links are over reliable FDDI links. A header checksum could be
added to the encapsulation header if needed.

The IP header of the encapsulated packet needs to have its
protocol type and destination field filled in. The IP protocol type
field is set to a new protocol type called IPPROTO_ATM, to
allow demultiplexing at the router. The IP address field contains
the IP address of the closest router. This is configured by anand
client on startup by writing a message on a socket bound to the
IPPROTO_ATM protocol. This message has the router’s IP
address as its destination address. The socket send routine for
IPPROTO_ATM assumes that a write to it is a configuration mes-
sage. It sets the IP forwarding address for IPPROTO_ATM to the
destination address of this message, and simply discards the mes-
sage. This allows a host to reconfigure its target router easily.
The default forwarding decision can be set by putting anand
client in the boot sequence.

At a router, a decapsulation protocol is placed above the IP
layer. When it is handed an encapsulated packet (of protocol type
IPPROTO_ATM) by IP, it checks that the data is in-sequence and

then simply hands the mbuf chain to the Orc driver along with the
VCI. The AAL5 trailer computation, segmentation and data
transmission is handled by the Hobbit ATM host interface [2].
Since these data intensive operations happen only at the router,
there is little overhead in providing the PF_XUNET interface to
non-ATM hosts. Computing the encapsulation header is inexpen-
sive (roughly the same time as for computing the UDP header).

At the remote router, the Orc driver needs to hand over
data received on a VCI either to the IP encapsulation routine or to
the router’s PF_XUNET protocol. To do this demultiplexing, the
router kernel maintains a table that contains a pointer to the han-
dler procedure for each VCI. In addition, for those VCIs that
need to be forwarded to a server on a remote host, it maintains a
per-VCI IP destination address table. When a server on a remote
host binds to a VCI, the bind message is handed to anand
client by the remote host kernel, as described earlier.
anand client sends a message to anand server, which
then knows the destination IP address for incoming data packets,
and also the VCI on which this data will arrive. It saves the IP
address in a table, and sets the handler for that VCI to be the
IPPROTO_ATM encapsulation routine. By maintaining an
explicit per-VCI IP destination address table, one can trivially
route the IP path over one of multiple IP interfaces (such as Ether-
net and FDDI). The handler routine for a VCI owned by a pro-
cess running on the router is automatically set to the IP packet
handler by PF_XUNET.

The two mappings (i.e. VCI to handler, and VCI to IP
address) are configured by writing a VCI_BIND message from
anand server to a IPPROTO_ATM socket (the same mecha-
nism as is used at a host to set its IP destination address field).
The VCI_BIND message contains the IP address of the host run-
ning the server, and the VCI on which it will be receiving data.
The socket send routine for IPPROTO_ATM sets the handler pro-
cedure pointer for that VCI to the IPPROTO_ATM encapsulation
routine and also sets up the VCI’s address mapping to the address
of the remote host. If sighost receives a termination message
for a VCI, it passes this on to anand server. The server then
writes a VCI_SHUT message to an IPPROTO_ATM socket so
that no more data is forwarded to the remote host on that VCI.
The two mappings are cleared, and the Orc driver is told to dis-
card any more data arriving with that VCI.

8. Application code example

In this section we present code fragments for an example
client and server that uses our extensions. Our goal was to make
it easy for an application developed over TCP/IP and BSD sock-
ets to be ported to PF_XUNET. This is achieved by hiding the
message exchanges between the application and the signaling
entity in a user library. Figure 5 presents a code fragment for a
server. A server calls the export_service routine to register
itself, then awaits incoming connections using
await_service_request. When a connection arrives, the
server is unblocked, and it can accept a call using
accept_connection. At this point, the server can spawn off
a child to do the actual work. Thus, the three additional calls hide
the signaling process from the application.

Figure 6 shows a code fragment for a client. A client
application needs only one additional call, to
open_connection(). In the current version of the library,
this is a blocking call, and when the client is unblocked, it can



connect to a PF_XUNET socket. It would be straightforward
to provide a non-blocking version of open_connection if that
were needed. When either client or server closes a PF_XUNET
socket, the signaling entity will automatically tear down the asso-
ciated call.

export_service("traffic", TCP_PORT);

/* Initiate exchange of messages with the

* signaling entity as shown in Figure 3 */

listen_sock = create_receive_connection(TCP_PORT);

/* Create a regular TCP socket for doing an

* accept. Sighost will inform the program

* using this socket when it receives a

* connect request */

cookie = await_service_request(listen_Sock,

comment, QoS);

VCI = accept_connection(cookie, comment, QoS);

/* This VCI is for the incoming connection request,

* with QoS parameters given in ’QoS’. A server may

* modify the QoS and return it to the client. */

recv_sock = socket(AF_XUNET, SOCK_DGRAM, 0);

add.family = AF_XUNET;

addr.VCI = VCI;

bind(recv_sock, addr);

/* Directs the protocol stack to pass any data

* received on this VCI to the given socket */

/* Now the server can receive data on this socket */

Figure 5: Code fragment for a server using signaling extensions

VCI = open_connection("mh.rt", "echo", TCP_PORT,

"this is a comment", traffic_class, QoS);

/* Returns a VCI with proper QoS */

send_sock = socket(AF_XUNET, SOCK_DGRAM, 0);

add.family = AF_XUNET;

addr.VCI = VCI;

connect(send_sock, addr);

/* This binds the VCI to the socket */

/* Now the client can send data on this socket */

Figure 6: Code fragment for a client using signaling extensions

9. Measurements

We used the technique similar to that of Clark et al [7] to
count the number of instructions to send and receive packets over
PF_XUNET at a host. We looked at assembly code for the
protocol-specific routines, ignoring procedure call overheads and
calls to memory management routines. Thus, the instruction
count is what is needed for packet protocol processing, assuming
that procedure calls were replaced with inline code, and indepen-
dent of the details of the operating system’s memory manage-
ment, socket and interrupt masking routines. We used the IP send
count of 61 and receive count of 57 from Reference [7].

On the receive side, the number of instructions executed
from software interrupt of IP by the device driver to enqueueing
the message in the socket layer is 194 + 8 * (# of mbufs in the
message). This is broken down into 57 for IP, 36 for
IPPROTO_ATM, 2 for the Orc device driver, and 99 + 8 * (#
mbufs) for PF_XUNET. On the sending side, the total number of
instructions to send a message (from socket layer to device) is
119 + 8 * (# of mbufs). This is broken down into 58 + 8 * (# of
mbufs) for IPPROTO_ATM, and 61 for IP. On the send side, the
PF_XUNET and Orc send routines simply call the next layer
down without touching the data or the header, thus incurring zero
cost (since procedure call overheads are not counted). At a
router, switching an encapsulated packet adds 39 instructions to
the overhead for FDDI/Ethernet driver input, IP switching and
Orc driver output. This is summarized in Table 1.
_ _________________________________________________________

Receive Send
Component Instructions Instructions_ _________________________________________________________
PF_XUNET 99+ 8*#mbufs 0
Device driver 2 0
IPPROTO_ATM 36 58 + 8*#mbufs
IP 57 61_ _________________________________________________________
Total 194 + 8*#mbufs 119 + 8*#mbufs_ _________________________________________________________ 





































Table 1: Instruction counts for the send and receive paths at a
host

We measured the time it takes for a client to establish a
connection and for a server to register a name and accept a con-
nection. The measurements were taken on a testbed consisting of
two routers (SGI 4D/30 workstations), with a three hop (two
switch) ATM path between them. The time to register a service
was 17-20 ms, and most of the time was due to the four context
switches performed in completing this RPC (application to kernel,
kernel to sighost, sighost to kernel and kernel to applica-
tion). The time to accept an incoming call was also around 20ms,
reflecting the dominant cost of context switches. The time to
establish a call between processes on two different routers was
about 330 ms. This was mainly due to the large amount of main-
tenance information logged per call by the signaling entities.
Since connection establishment can be made non-blocking, we do
not think that this poses a serious problem. However, there is
ample scope for optimization and performance tuning.

The overhead for encapsulation/decapsulation is small (39
instructions), and so we expect throughput between a host and a
router to be comparable to that of UDP. Since this path is not
traffic-controlled, the throughput and delay on this path is highly
variable, and we did not measure it.

Table 2 gives the sizes of the principle software



components at a host in lines of C code (with comments) and text,
data and BSS size. The code size is fairly small compared to the
kernel size of ˜1.75 MB.
_ ___________________________________________________
Component Lines Text Data BSS_ ___________________________________________________

Sighost 1204 104.7 26.8 77.9
User lib 373 2.5 1.4 0
/dev/anand 382 1.95 1.15 9.6
PF_XUNET 463 2.4 .37 16.4
IPPROTO_ATM 164 .64 .20 0
Orc 96 2.5 .18 22.5_ ___________________________________________________ 



















Table 2: Code sizes for principal components at a host (KB)

10. Experience and discussion

The design described in Section 7 has been implemented at
AT&T Bell Laboratories, Murray Hill. The signaling extensions
were completed in August ’93, and AAL5 over IP in December
’93. Our experience with the design has been positive. In this
section, we discuss the extent to which the design goals stated in
Section 4 have been satisfied.

Ease of modification and extendibility: We were able to easily
modify the signaling entity since it runs in user space. An
example: the first cut at signaling did not support QoS
parameters, but we were able to add them with only a few
hours of work.

Robustness: Routers with the modified kernel have stayed up
even when thousands of calls have been setup and torn
down. We designed an intensive workload in which a hun-
dred calls were initiated as fast as possible. Each call was
held for one second, then torn down. This workload has
been run successfully between routers as well as between a
host and a router. We also ran tests where clients and
servers were terminated during various stages of the call
setup process. The network and signaling state were
always correctly restored. Based on this experience, we
are satisfied that our software is robust enough to be placed
in the field.

Scaling: There were two subtle scaling problems. First, the size
of the message buffer in the pseudo-device restricts the
number of messages that the kernel can enqueue for the
signaling entity. Initially we configured the device with
only eight buffers, which led to problems when a large
number of connections were simultaneously opened by the
test workload, and some bind indications were lost. Our
current implementation has eighty buffers, which has
proved to be adequate. In any case, each message is small
(4 bytes), so it cheap to increase the size of this buffer.

The second problem is that the maximum number of file
descriptors that can be accessed by a server restricts the
number of simultaneously establishing connections. Each
incoming connection from a client is forwarded by the sig-
naling entity to the server over a TCP/IP socket, and is
associated with a corresponding file descriptor. This
descriptor is kept open for the duration of connection
establishment and then immediately closed. However,
even after the socket is closed by both ends, TCP keeps the
descriptor in the table for two Maximum Segment Life-
times to handle packets that arrive after long delays. This

uses up table space, and restricts the number of clients that
can establish a connection to a particular server simultane-
ously. Since the table size is typically around twenty, this
created problems for the test workload which opened a
hundred connections to the same server. To get around
this problem, we increased the kernel’s per-process file
descriptor table size to 100. With this change, and the
increase in the message buffer size, we were able to estab-
lish and keep open two hundred connections between two
routers.

Frugal use of resources: We were able to recover reserved
resources throughout the network when either the client or
the server application terminated.

QoS negotiation: As discussed earlier, the user library allows
client programs to specify a QoS specification that can
then be modified by a server application and returned to
the client application. We believe that this provides a min-
imal framework in which to provide QoS to applications in
an integrated network. At the moment, the QoS string car-
ries only a service class and a bandwidth request, as dis-
cussed in Reference [17]. We plan to extend this frame-
work as we get more experience with application needs.

Orthogonality of implementation: Our implementation does not
make any assumptions about the functionality provided by
the PF_XUNET stack. In fact, the stack currently imple-
ments only a UDP-like functionality. An outline of the
semantics we plan to support in the stack is presented in
Reference [12]

11. Related work

Our work is most similar to that of Biagioni, Cooper and
Sansom [3] at Fore Systems. They have integrated an ATM
Application Programmer’s Interface and the proprietary SPANS
signaling protocol to allow users to send ATM cells into a Fore
ATM network. They locate the signaling entity in the device
driver, making it hard to implement and modify SPANS signal-
ing. While this may be reasonable for a commercial offering, it is
unacceptable for a research environment such as ours. (However,
putting signaling in the kernel makes it much easier to free up
resources from terminated applications.) The ATM API they
describe bypasses the socket layer. This makes it harder to port
existing BSD-socket based applications. Finally, unlike our
design, they do not allow applications on machines without ATM
host interfaces to access their API and send encapsulated cells
into their ATM LAN.

Black and Crosby at the University of Cambridge describe
support for the MSNA ATM protocol stack in Reference [4]. A
key design decision that they made was to use a special socket for
communication between the signaling entity and the kernel. This
leads to numerous problems with concurrent accesses to per-VCI
data structures. Further, the kernel needs to be aware of signaling
messages interspersed with control messages on the special
socket. We sidestep most of these problems by using a pseudo-
device.

The work of Cranor and Parulkar, who have designed and
implemented the COIP-K protocol domain in the BSD Unix ker-
nel [8], is similar in that they also provide an infrastructure for
protocol development and testing. They have extended the proto-
col domain to support multiple COIP protocols simultaneously.



However, they do not discuss the interaction of the signaling
entity and the kernel, which we believe is critical to providing
per-application QoS.

Robin, Coulson, Campbell, Blair and Papathomas at Lan-
caster University have described an ATM stack implementation in
the Chorus microkernel [16]. Their work is much more ambitious
in that they consider both network and CPU scheduling for per-
forming admission control of continuous media streams. They
describe the semantics of the stack, its implementation, as well as
the support needed from the system. However, since all their
implementation is in user space, they do not face the user-kernel
interaction problems that are common in Unix.

Our work can be viewed as complementary to that of
Campbell et al at the Lancaster University [5, 6] and by Fry et al
at the University of Technology, Sydney [11]. They have
designed the semantics of a protocol stack that provides per-
application QoS. We hope to learn from their work in implement-
ing suitable protocols in the PF_XUNET domain.

The QoS parameters passed by a client or server applica-
tion to the signaling entity can be used to schedule resources at
the end system, as described in [15] or in the network (see Refer-
ence [18] for a partial survey). This is an area rich in research
possibilities, and we hope to use our testbed in exploring some of
them.

12. Conclusions

We have a clean design for implementing a native mode
ATM stack in a Unix environment (Figure 2). We have imple-
mented this design in the IRIX kernel. Our work allows user
applications to establish a connection parameterized by QoS
parameters over ATM networks. A user library and Berkeley
socket compatibility makes the task of porting existing applica-
tions to the new framework quite straightforward. The design is
robust and easy to extend. A novel technique allows AAL frames
from IP-connected hosts to be encapsulated in IP packets and thus
enables them to access ATM networks. We believe that our
research will enable future work in areas such as designing
connection-oriented services that can specify QoS requirements to
the network, and efficient scheduling of end-systems to support
QOS. This is essential in any future multimedia network.

13. Acknowledgments

We would like to thank M.J. Dixon for the original imple-
mentation of the PF_XUNET stack and signaling protocol, and
Dave Presotto and Joann Ordille for comments on an earlier draft
of the paper. Dimitri Pendarakis helped us collect performance
measurements on our testbed. Thanks also to the anonymous ref-
erees for their detailed and insightful comments.

14. References

1. ANSA Reference Manual Release 1.00, APM Ltd, Poseidon
House, Castle Park, Cambridge, CB3 0RD, UK, March
1989.

2. A. Berenbaum, M. J. Dixon, A. Iyengar and S. Keshav,
Design and Implementation of a Flexible ATM Host Inter-
face for XUNET II, IEEE Network Magazine, July 1993.

3. E. Biagioni, E. Cooper and R. Sansom, Designing a Practi-
cal ATM LAN, IEEE Network Magazine, March 1993.

4. R. Black and S. Crosby, Experience and Results from the
Implementation of an ATM Socket Family, Proc. USENIX
’94, 1994.

5. A. Campbell, G. Coulson, F. Garcia and D. Hutchison, A
Continuous Media Transport and Orchestration Service,
Proc. ACM SIGCOMM, 1992.

6. A. Campbell, G. Coulson and D. Hutchison, A Multimedia
Enhanced Transport Service in a Quality of Service Archi-
tecture, Proc. 4th International Workshop on Network and
Operating System Support for Digital Audio and Video,
November 1993.

7. D. D. Clark, V. Jacobson, J. Romkey and H. Salwen, An
Analysis of TCP Processing Overhead, IEEE Communica-
tions Magazine, June 1989, 23-29.

8. C. D. Cranor and G. M. Parulkar, An Implementation
Model for Connection-oriented Internet Protocols, Internet-
working: Research and Experience 4, 3 (September 1993).

9. D. C. Feldmeier, Multiplexing Issues in Communication
System Design, Proc. ACM Sigcomm 1990, October 1990,
209--219.

10. A. G. Fraser, C. R. Kalmanek, A. Kaplan, W. T. Marshall
and R. C. Restrick, Xunet 2: A Nationwide Testbed in
High-Speed Networking, Proc. IEEE INFOCOM 1992,
May 1992.

11. M. Fry, A. Richards and A. Seneviratne, Framework for
Implementing the Next Generation of Communication Pro-
tocols , Proc. 4th International Workshop on Network and
Operating System Support for Digital Audio and Video,
November 1993.

12. S. Keshav, Semantics of a Native-Mode ATM Protocol
Stack, Submitted to ACM Multimedia ’94, March 1994.

13. S. J. Leffler, M. K. McKusick, M. J. Karels and J. S. Quar-
terman, in The Design and Implementation of the 4.3BSD
UNIX Operating System, Addison-Wesley, 1989.

14. I. M. Leslie, D. R. McAuley and D. L. Tennenhouse, ATM
Everywhere?, IEEE Network Magazine 7, 2 (March 1993).

15. K. K. Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D.
Ting, P. Tzelnic, S. Glaser and W. Duso, Operating System
Support for a Video-On-Demand File Service, Proc. 4th
International Workshop on Network and Operating System
Support for Digital Audio and Video, November 1993.

16. P. Robin, G. Coulson, A. Campbell, G. Blair and M. Pap-
athomas, Implementing a QoS Controlled ATM Based
Communications System in Chorus, Internal Report MPG-
94-05, March 1994. Available by anonymous FTP from
comp.lancs.ac.uk:/pub/mpg/MPG-94-
05.ps.Z.

17. H. Saran, S. Keshav, C. R. Kalmanek and S. P. Morgan, A
Scheduling Discipline and Admission Control Policy for
Xunet II, Proc. 4th International Workshop on Network and
Operating System Support for Digital Audio and Video,
November 1993.

18. H. Zhang and S. Keshav, Comparison of Rate-Based Ser-
vice Disciplines, Proc. ACM SigComm 1991, September
1991.


