
��� D� Ferrari and D� Verma� A scheme for real�time channel establishment in wide�area networks� IEEE
J� on Selected Areas in Communications� April �����

�	� D�J� Greaves and D� McAuley� Atm network services for workstations� I��� deliverable documents� ���
�

��� V� Jacobson� Congestion avoidance and control� Proc� ACM SigComm ����� pages
���
�� August
��		�

���� M�B� Jones� Adaptive real�time resource management supporting modular composition of digital multi�
media services� Proc� �th International Workshop on Network and Operating System Support for Digital
Audio and Video� November ���
�

���� H� Kanakia� P�P� Mishra� and A� Reibman� An adaptive congestion control scheme for real�time packet
video transport� Proc� ACM SigComm� ���
�

��� S� Keshav� Packet�pair �ow control� Submitted to ACM Trans� on Networking� �����

��
� S� Keshav� Real � A network simulator� CSD TR ������ 	 UC Berkeley� December ��		�

���� S� Keshav� A control�theoretic approach to �ow control� Proc� ACM SigComm ����� September �����

���� J�M� Smith K�Nahrstedt� The qos broker� IEEE Multimedia� ����� Spring �����

���� S�J� Le�er� M�K� McKusick� M�J� Karels� and J�S� Quarterman� The Design and Implementation of the
��
BSD UNIX Operating System� Addison�Wesley� ��	��

���� R� Perlman� Interconnections� Addison�Wesley� Reading� MA� ����

��	� D� Presotto� R� Pike� K� Thompson� and H� Trickey� Plan �� A distributed system� In EurOpen	
Proceedings of the Fall ���� Conference� Tromso� Norway� May �����

���� D� Presotto and P Winterbottom� The organization of networks in plan �� In Usenix	 Winter ���

Conference Proceedings� pages ���	�� San Diego� CA� January ���
�

��� K K� Ramakrishnan and R� Jain� A binary feedback scheme for congestion avoidance in computer
networks� TOCS� 	�����	��	�� May �����

��� K�K� Ramakrishnan� L� Vaitzblit� C� Gray� U� Vahalia� D� Ting� P� Tzelnic� S� Glaser� and W� Duso�
Operating system support for a video�on�demand �le service� Proc� �th International Workshop on
Network and Operating System Support for Digital Audio and Video� November ���
�

�� R� Sharma and S� Keshav� Signaling and operating system support for native�mode atm applications�
Proc� ACM Sigcomm ����� �����

�
� C�A� Sunshine and Y� Dalal� Connection management in transport protocols� Computer Networks�
�������
� ���	�

��

seems premature since much is unknown about what is really needed� session layer semantics�

Greaves and McAuley at Cambridge �	� have also implemented a non�multiplexed protocol stack over
ATM� While interesting� their work has mainly been at the network layer �MSNL�� and� to the best of our
knowledge� do not extend to transport and session layer semantics� In contrast� IDLInet provides a fairly
complete stack that is compatible at the user�interface level with BSD sockets and TCP�IP�

There have been numerous attempts to design transport layer protocols in the past� Of these� one of the
more complete attempts is the TP�� project ���� TP�� has several interesting features such as forward
error correction� timer�based connections and congestion control based on backpressure� While per�VCI
backpressure can require considerable feedback from switches� which is hard to legislate in a multi�vendor
framework� several of their ideas are orthogonal to our innovations� and we plan to consider them in future
work�

�� Future Work

We are still building the stack� The �rst version of the stack has been released� but extensions of the work for
better �ow control and multicast support are needed� One area that has attracted much recent attention is
in de�ning the semantics of CPU scheduling for end�systems that support per�VCI QoS ��� ���� As we have
discussed� the IDLInet stack provides a good testbed for research in this area� We also plan to investigate
the semantics of fault recovery in more detail� particularly with reference to re�routing�

�� Acknowledgments

We would like to acknowledge the contributions of R�N� Moorthy and R�P� Rustagi in the detailed design of
the stack and in coordinating its �rst implementation� This implementation was revised and extended by
R� Ahuja� J� Sarbadhikari and S� Vijay� The �rst draft of this manuscript bene�ted from comments by C�R�
Kalmanek� J� Crowcroft� and P�P� Mishra� Our thanks to all of them�

References

��� A� Banerjea and B� Mah� The real�time channel administration protocol� Proc� Second International
Workshop on Network and Operating System Support for Digital Audio and Video� pages ��������
November �����

�� A� Campbell� G� Coulson� and D� Hutchison� A quality of service architecture� ACM Computer Com�
munications Review� April �����

�
� A� Campbell� G� Coulson� and D� Hutchison� A multimedia enhanced transport service in a quality of
service architecture� Proc� �th International Workshop on Network and Operating System Support for
Digital Audio and Video� November ���
�

��� CCITT� Draft speci�cation i�
�
� Available for anonymous FTP from datanet�tele��� ���
�

��� D�C� Feldmeier� An overview of the tp�� transport protocol project� In A� Tantawy� editor� High
Performance Networks�Frontiers and Experience� pages �������� Kluwer Academic Publishers� Boston�
MA� ���
�

��� D�C� Feldmeier� Multiplexing issues in communication system design� Proc� ACM Sigcomm ���� pages
������ October �����

��

adapt to the network layer� since it is the network layer� Further� the signaling layer allows the endpoint to
explicitly request an ATM connection from the network�

There are several novel aspects to our work� First� all the layers of the stack were designed at the same
time� This allowed us to minimize data copying overheads and keep the design simple� We have optimized the
distribution of tasks between layers to maximize parallelism and eliminate repeated functionality� Second�
the task�based non�multiplexed implementation makes it easy to provide per�VC QoS� The central scheduler
can examine all the QoS requirements in deciding which task to run next� It can also coordinate resource
allocation with the end�system CPU scheduler� Third� the stack was �rst implemented on a simulator� then
moved to a real system� This allowed us to understand the design and debug it before committing it to the
�eld� Improvements to the protocols are tested in the simulator before they enter the kernel� This speeds
up the design and implementation process� Fourth� since this is a new design� with no need for backward
compatibility with existing implementations� we have been able to incorporate the best available �ow and
error control mechanisms into the stack� Finally� the stack�s external interfaces are compatible with the
existing TCP�IP and BSD socket interface� Thus� existing application programs can be migrated to the
IDLInet stack with little e�ort�

�� Related work

It is useful to contrast the semantics of IDLInet with standard BSD socket�TCP�IP�Unix device driver se�
mantics� At the socket layer the semantics are similar �including duplex� error�controlled and �ow�controlled
connections�� except that sockets are bound to VCIs instead of TCP ports� This allows easy portability
of existing code� At the transport layer� TCP�s error control uses similar mechanisms� However� the �ow
control mechanisms di�er considerably since we propose rate based �ow control independent of the error
control window size� Further� unlike TCP� data checksumming is done at the network layer�

Unlike IP� the network layer does not do fragmentation and reassembly� instead� this is done at the
transport layer� Also� the network layer does not do routing� which is done by the signaling layer� In contrast�
a considerable complexity in IP is in implementing fragmentation and routing correctly� By removing this
burden from the network layer� it becomes faster to implement and execute� Finally� the network layer does
not multiplex multiple transport connections �unlike IP�� allowing the QoS from the ATM layer to be visible
at the higher layers� Thus� we believe that our protocol stack semantics are more tuned to ATM networks
than stock TCP�IP�

Our work di�ers from IP�over�ATM in many ways� In the IP�over�ATM approach� the application sees
only the IP interface� which does not provide any QoS guarantees� Thus� any guarantees available from the
ATM network are hidden� Second� the IP�over�ATM subsystem has to make signaling requests on behalf of
the application� which adds considerable complexity to the kernel� Third� IP routing assumes a broadcast
medium in the local area� which is critical for the ARP protocol� IP�over�ATM has to spend a lot of e�ort
emulating this over the point to point ATM network� By using a native mode ATM stack� all these problems
are automatically eliminated�

Our work is closely related to that of Campbell et al �
� who have proposed a multimedia enhanced
transport service and a Quality of Service Protocol Architecture ��� As in our stack� they have placed �ow
regulation at the transport layer� and have no logical multiplexing of streams� However� they have decom�
posed the service interface into guaranteed�performance and best�e�ort �ows� This hides the orthogonal
aspects of �ow control� error control� QoS speci�cation and simplex versus duplex circuits that our stack
explicitly presents� As a consequence� their interface does not allow for some combinations that may prove
to be useful� such as non�error controlled but feedback �ow controlled �ows� which is an alternative way
to carry Variable Bit Rate video tra�c ����� Second� their stack provides a complex API � for example�
applications are expected to provide dummy upcalls for computing the average time taken for a user task�
We think that this complexity can result in poor performance� Finally� their choice of a QoS speci�cation

��

�� Current Status

A �rst version of the IDLInet stack on the REAL simulator and DOS PCs is available for public distribution�
This distribution includes all the features discussed in this paper except OS support� which has not yet been
incorporated into the simulator version of the stack� Table � shows the size of each component� Note that the
entire stack is only around ���� lines of C code� including comments� The data transfer path �the datalink�
AAL� transport and session layers� adds up to about ��� of the code� and about �� is devoted to signaling�
Using 	�
	� based MS�DOS PCs� we have measured user�to�user data transfer rates of ��� Mbps over a ��
Mbps Ethernet�

Layer Lines Percent
Datalink ��	 ��
AAL �

�
Transport ��� ����
Session ��� ���
Scheduler
	� ���
Memory management ��
 ���
Link state routing ��	 ���
Signalling �� ���
Multicast �	� ���
Total ���� �����

Table �� Number of lines in each layer of the protocol stack�

A port of the stack to the Plan � operating system ��	� ��� is substantially complete� This port contains
the OS support functionality� but not yet the transport layer� With a null transport layer� we have achieved a
user�to�user data rate of �� Mbps between two 	��	� PCs running the Plan � operating system and connected
by Fore Systems� HPA��� cards and an ASX���� switch� We can establish and tear down connections using
SPANS signaling� We do not expect there to be any performance degradation with the addition of the
transport layer since the bottleneck is the EISA bus on the PC� and we already account for the data copies
in this test� �

Our experience with porting IDLInet to other platforms has been very positive� The stack has been
designed so that machine�dependent and machine�independent subsystems are clearly separated� Thus� a
port only involves rewriting the machine�dependent subsystems� For example� the port to DOS took two
weeks� and the port to Plan �� once the device driver was written� has taken a little over a month �and is
still in progress��

Another gain from our approach to protocol stack development is that new features can be extensively
tested and debugged before they are introduced into an OS kernel� This has proved to be extremely useful
for debugging the transport layer semantics�

�� Contributions of our work

IDLInet was designed using a few principles� minimality� no logical multiplexing� and ATM speci�city� The
criterion of minimality led to a design from �rst principles� cleanly separating the functionality of each
layer and each service� Our service interface allows applications to mix and match from a small number of
orthogonal services� By eliminating logical multiplexing� we present a direct path from an application to its
associated ATM VC� This path can be customized per�VC using the service interface� Targeting to ATM
allows the stack to be easily integrated into future ATM networks� For example� the AAL does not have to

�The �nal version of this paper will have performance �gures for the transport layer�

�

on which the message arrived� We use single master approach where all members who wish to join the
group send message to the group master� which uses knowledge of the network topology �from routing� to
decide a multicast tree� Signaling messages are then sent by the master to the appropriate switches for the
establishment of this tree� All VCs in a multicast tree must have the same QoS speci�cation� Since the
single master coordinates joins and leaves� these are easy to implement�

A centralized multicast master does not scale well� and in future work� we plan to explore strategies for
distributing this functionality�

��� IDLInet implementation of the control plane

IDLInet supports the Real�time Channel Administration Protocol from UC Berkeley ���� and the SPANS
protocol from Fore Systems� RCAP has been extended to allow duplex channels� multicast� a QoS manager
and QoS renegotiation� SPANS has been extended to allow duplex channels�

Where possible �i�e when communicating to a switch controller running IDLInet�� the signaling layer uses
the duplex reliable service of the session layer to communicate with its peers �we do not� at the moment�
implement the ITU�TSS SSCOP transport layer�� Since this service requires the peer transport endpoints
to exchange messages for a three way handshake during initialization� there is a potential bootstrapping
problem� where signaling needs the transport layer to provide reliability� and the transport layer needs
signaling in order �nd out which VCI to use for the forward and reverse connections� To solve this� at the
time of initialization� the signaling layer loads the protocol status block with both the forward and reverse
VCIs initialized with the values discussed above� The transport layer simply uses these values in doing its
three way handshake� Subsequently� signaling peers can communicate through these signaling channels using
t send and t recv� The result of this is that all retransmissions are done by the transport layer and the
signaling entity can assume in order and guaranteed delivery�

Our experience in writing signaling implementations over both unreliable and reliable channels is that
signaling over reliable links is far easier to implement and debug� Unfortunately� many current signaling
standards run over reliable transport layers� but still repeat all the work done in the transport layer�

The procedure interfaces support by the control plane for signaling are as follows

�� Port register�unregister ��

r�register�uint port� uint queue�length��

�� call establishment ��

r�receive�request�uint port� Param�Block �param� rcapAddress �source� uint �conn�id��

r�establish�request�Param�Block �param� uint �conn�id�uint source�port��

r�establish�confirm�uint conn�id��

r�establish�return�uint conn�id� uint result�u�int reasonCode�rcapUser Control �control��

�� Call close�teardown ��

rcap�close�request�uint conn�id� uint reasonCode��

Typically� the server would register itself using rcap�register� and then wait for calls using rcap�receive�request�
The client would establish a new connection using rcap�establish�request� and periodically check status
of the call using rcap�establish�confirm �a spin lock�� The client�s call is accepted by the server using
rcap�establish�return� Finally� rcap�close�request is called to tear the connection down�

�

requested is con�rmed at each intermediate point� and temporary identi�ers are converted to VCIs� Finally�
the client application is informed about the success of the call� and the VCI to be used� The local data
transport layers are also informed about the new connections and their QoS parameters to allow them to
make scheduling decisions�

When an application requests a reliable stream� the situation is somewhat more complicated� We will
refer to the signaling entity that initiates the call as L� the local signaling entity� and to the signaling entity
that receives the call as R� When L receives a request for a reliable connection� it passes this request to
R via the intermediate peers as before� The session layer associated with L also creates a unique dummy
service name and passes this to R in the call�setup packet� At the remote end� if the application accepts
the call� R sends back a con�rmation of the forward simplex connection and also initiates a connection to
the dummy service� When L receives a connection request on the dummy service� it accepts the incoming
call and returns the con�rmation� This sets up the two simplex circuits� What remains is to inform the
data transport layers about the forward and reverse VCIs� This is done by entering the two VCIs in the
appropriate protocol control blocks�

If an application asks for a duplex stream �either unreliable or reliable�� a similar set of actions is
performed by the session layer� The two corresponding transport connections are managed by the session
layer� and are unaware of each others existence�

��� Routing

If an endpoint is connected to multiple switches� it needs to know which switch to use for contacting a given
destination� To solve this problem� the signaling layer periodically exchanges linkstate update packets on
best�e�ort channels with all its peers ����� These packets are forwarded by each receiving signaling entity
on every outgoing link� thus �ooding the network� By combining the linkstate information received through
�ooding� a signaling entity can build its own copy of network topology� on which a standard shortest�path
algorithm is run in order to construct a routing table�

If a signaling entity does not receive updates over a link for a long period of time� it marks that peer
dead� and the revised link state is broadcast� triggering an update of the distributed routing database� Thus�
future calls will be routed around the failed link� At the moment� we do not perform failure recovery for
existing calls�

��� OS interaction

The signaling entity needs to interact with the operating system in order to clean up after applications
that terminate without releasing network resources �i�e� without initiating circuit teardown� ��� If an
application �either client or server� terminates abnormally� network resources can be locked up� To prevent
this� the operating system must inform the signaling entity when an application terminates� On receiving a
termination indication from the operating system� the VC is torn down and resources are released� When
the signaling entity receives a close indication from its peer� the session layer marks the VC as closed� so that
on a subsequent read or write from that VC� an error indication is returned� The IDLInet implementation
of these actions is discussed in ���

��� Multicast

This is the fourth major function provided by the control plane� For implementing multicast we use the
shared tree approach� We require each multicast virtual circuit to be bidirectional� Each switch controller
maintains a list of virtual circuits that are in the same multicast group and when a message comes on any
one of these virtual circuits it is sent out by the switch on all associated VCs other than the virtual circuit

��

��� Establishing provisioned virtual circuits

The �rst function of the control plane is to allow an application at an endpoint to set up a QoS provisioned
virtual circuit� and to inform data transmission layers at end systems and intermediate switches about the
QoS parameters� This function is provided by two entities� the QoS broker ���� at each endpoint� and the
signaling entity at each endpoint and switch� The QoS broker translates from application QoS speci�cation
to network QoS speci�cation and passes this information on to the signaling entity� The signaling entity
cooperates with its peers in order to set up QoS�provisioned channels� We describe these two functions next�

����� QoS Broker

A user�s view of QoS is very di�erent from the network view of QoS� For example� the user of a video
application may parameterize QoS by the size of the display �width and height� and the quality of the picture�
speci�ed using a mean opinion score �MOS�� The video application works with the media parameters� the
quantization level and frame rate� Finally� the network deals with yet another view of QoS� bandwidth�
jitter� loss rate etc� A video application thus needs to be able to translate between three di�erent views of
QoS which we call the user QoS� media QoS and network QoS respectively� We have built a QoS broker ����
to help with this translation�

We use the interval ����� to represent a quality range� � corresponding to perfection� Given a particular
media parameter �say frame rate� we assume that there is a function that maps this to a quality value� The
overall picture quality is obtained by multiplying the individual quality value for each medium parameter�
Conversely� we assume that given the quality value of a medium parameter� there is a function to map back
to the required media value�

The forward translation process is to map user QoS to media and then network parameters� However�
this is a one�to�many function� as one may achieve the same MOS with many combinations of quantization
level and frame rate� As a heuristic� given a user MOS �which we scale to the ����� interval�� we divide the
quality value equally along each dimension �thus a user MOS of ��	� implies that the quality in the frame
rate parameter is ��� and in the quantization level parameter is ����� Using the mapping functions we obtain
the appropriate frame rate and quantization level� This immediately gives us the network QoS requirements�
These are communicated to the signaling system during call establishment�

In case a call setup request fails� the broker is informed about best possible network QoS values� It
must then map this to the best possible user QoS values and determine the operating parameters to use�
The reverse translation is also non�unique and requires a heuristic decision� The QoS broker tries to choose
parameters so that the quality values in each dimension are roughly equal� Thus� the reduced network
QoS are translated back to reductions in user perceived QoS� and these can them be implemented by the
application�

����� Call Establishment

Once the application has determined the appropriate QoS using the broker� it must then set up a call�
This is done by contacting the signaling entity and requesting a call to a destination and a service at that
destination ��� When the signaling entity at an endpoint or switch receives a call setup request� it uses
a routing database to compute the next hop� It then gives the call a temporary identi�er and contacts its
peer signaling layer� It also checks the state of local resources and performs admission control� If there
are insu�cient resources� the call is rejected� and the application is informed� Otherwise the call request
is passed from peer to peer� and each does admission control� allocating temporary identi�ers if the call is
accepted� This is the forward pass� At the destination� the signaling layer contacts the application that
had registered to provide the service� The application is allowed to accept or reject the call� or modify the
QoS parameters requested by the sender� In the reverse pass� if the application accepts the call� the QoS

��

the application as possible to allow it to quickly get feedback about its allowed �ow rate� Since there is no
multiplexing in the protocol stack� we are able to move this functionality up to the transport layer� Thus� an
application sending data faster than its leaky bucket rate would �ll its session layer input bu�er� and when
this happens� either the application could be throttled by the operating system� or a signal can be handed
to the application informing it about the over�ow situation� This control is much easier to implement at the
transport layer than at the host adaptor or a remote Network Interface Unit� as is usually the case�

The implementation of leaky bucket is trivial � for each virtual circuit� the transport layer remembers
the time that the last TPDU was sent� On arrival of a session layer PDU� �ow control compares the current
time with that time to determine how many tokens must have arrived in the interim� This is su�cient to
know how many TPDUs can be sent right away� and the earliest time that the next TPDU can be sent� The
transport layer then extracts the largest number of fragments that can be sent at the current time from the
TPDU chain� and hands them to the network layer� A timer is also set for the earliest time the next TPDU
can be sent� based on the leaky bucket arrival rate�

� Session layer

The session layer provides two services� First� it creates an abstraction of a duplex service over simplex
transport streams� Second� it provides maps the transport layer�s data movement interface and signaling
layer�s connection establishment interface to a BSD�socket procedure call interface�

Some applications might want to both read and write from a transmission endpoint� Since transport
service is simplex� the session layer coordinates two transport endpoints to provide a duplex service abstrac�
tion� During data transfer� when an application does a send to the session layer� this is translated into a
t send to the corresponding simplex transport connection� Similarly� recvs are translated into a t recv on
the corresponding simplex connection� The signaling required to set up duplex connections is described in
Section ���

Since there is a large existing base of applications based on BSD socket semantics ����� In order to
allow easy porting of these applications to the native mode stack� the session layer translates BSD calls into
transport layer and signaling layer calls� The BSD socket call sets up an entry point into the protocol
stack to provide a handle into the read and write VCIs� The bind call is used by a server to register with
the signaling entity� The connect call translates to a message sent to the signaling entity requesting a
connection� The server uses the listen and accept calls to accept this incoming connection� The read and
write calls map into the t send and t recv calls on the appropriate simplex VC�

� Control Plane Functionality

In a network where the network and datalink layers are connectionless� such as those based on IP or CLNS�
an endpoint does not need to communicate with switching points before initiating data transfer� However� in
connection�oriented ATM networks� an endpoint must explicitly request switches to set up a connection before
the start of data transfer� This request may be quali�ed with a Quality of Service speci�cation� thus allowing
switching points to reserve bandwidth and bu�er resources on behalf of the connection� Conceptually� the
communication between an endpoint and the network is orthogonal to the data transfer layers� and thus is
in the control plane �see Figure ��� In this section� we discuss the semantics of the control plane for the
native mode ATM stack�

The control plane is responsible for four major functions� establishing channels with a speci�ed QoS�
routing� OS interaction for process management and multicast support� We discuss these below�

�

guess with high probability that the packet with a sequence number one larger than this sequence number
was lost�

In our scheme� the acknowledgment also carries the sequence number of the TPDU that generated the
acknowledgment� allowing sources to additionally determine which sequence numbers have been correctly
received ���� A retransmission is triggered either by a repeated cumulative acknowledgment �fast retrans�
mission� or by a retransmission timeout� In either case� the entire current transmission window is scanned for
possible retransmissions �as in go�back�n�� During a fast retransmit� only packets not already retransmitted
or not correctly received are retransmitted� During a timeout� only packets not correctly received are retrans�
mitted � thus packets retransmitted by a fast retransmit but subsequently lost are retransmitted a second
time by the timeout� This scheme combines the e�ciency of selective retransmission with the robustness
of go�back�n retransmission� They allow a sender to quickly �ll a gap in the error�control window without
stalling while waiting for a timeout� or paying the overhead and complexity of a selective acknowledgment
scheme�

To allow retransmissions� a source must keep a copy of the outstanding data� and the size of this bu�er
is limited by an error�control window� Since a receiver will also need to keep a copy of delivered data to
assure in�sequence delivery of data� the error�control window size must be negotiated by the peer transport
layers during call setup� At the moment� IDLInet does not implement this negotiation�

Note that the transport layer does not do checksumming to detect corruption� since this is already taken
care of at the network layer�

The reliable service is simplex� so the sender sends only data� and the receiver sends only acknowledg�
ments� This makes their state machines rather simple� �The abstraction of duplex reliable service is provided
by the session layer� described in Section 	��

��� Feedback Flow Control

Flow control allows an endpoint to regulate the data transmission rate to match the maximum sustainable
�ow by that VC in the network� The transport layer provides both open�loop and feedback �ow control�

If the scheduling discipline at the switches is round�robin like� feedback �ow control is based on the
Packet�pair �ow control scheme ����� In this scheme� all TPDUs are sent out in back to back pairs� and the
inter�acknowledgment spacing is measured to estimate the current bottleneck capacity �the bottleneck may
be in the network or the receiving end�system�� This time series of estimates is used to make a prediction
of future capacity� and a simple predictive control scheme is used to determine the source sending rate� It
has been shown that for a wide variety of scenarios� Packet�pair �ow control performs nearly as well as the
optimal �ow control scheme� that is� a scheme that operates with in�nite bu�ers at all bottlenecks ���

Note that this scheme cleanly separates �ow control and error control� Windows are used for error control
and to size bu�ers at the transmitter and receiver� Flow control is used to match the source transmission
rate with the current bottleneck capacity� When windows are used both for �ow control and error control�
packet losses will trigger a slowdown in the sending rate ��� ��� which may not be warranted by the current
congestion level� This becomes important in high�speed networks where the bottleneck service rate is a
rapidly changing quantity�

If the network does not support round�robin scheduling� the transport layer uses a standard dynamic�
window �ow control scheme similar to TCP �ow control ����

��� Open�loop Flow Control

The transport layer provides open�loop �ow control based on leaky bucket semantics� Usually a leaky bucket
is placed at the datalink or physical layer� We believe that the tra�c shaping function should be as close to

	

network layer� Thus� the transport layer and layers above can be ported with little extra work�

� Transport Layer

The transport layer provides simplex virtual circuits� error control� and �ow control� In addition� it segments
application layer bu�ers into TPDUs and reassembles them on the receive side� Here� we present the
mechanisms required to provide these semantics�

The transport layer is implemented by the t send and t recv procedures and the t schedule send and
t schedule recv tasks� t send and t recv are called either by the socket layer or an application to send and
receive data� The t schedule send task is scheduled by the t send procedure� and the t schedule recv

task is scheduled by the datalink layer� as described earlier�

��� Segmentation and Reassembly

There are two reasons why the transport layer may want to fragment an application message into TPDUs�
First� there is a limit on the size of an AAL frame ��� bytes for AAL
�� and ��K for AAL ��� Thus� if the
message is larger than this size� it will need to be fragmented�

A more compelling reason has to do with error control� The unit of error detection and retransmission is
a TPDU� If this is large� then each loss is re�ected in a large retransmission overhead� By keeping TPDUs
small� the retransmission ine�ciency is minimized� Thus� the TPDU size can be chosen to deal with per�
fragment overheads� the connection�s error characteristics and the available timer resolution� Indeed� this is
the choice of �Multiplexing Block� in reference ����

On the transmit side� the transport layer�s t send procedure copies an application bu�er into a chain of
TPDUs� and then schedules the t schedule send task� In order to preserve message semantics� the TPDU
header has a message number� fragment number� and an end�of�message �ag�

On the receive side� the t schedule receive task picks up TPDUs from the network layer and queues
them in per�VC queues� If the VC supports message boundaries� fragments are reassembled by the receiving
transport layer and the t recv procedure returns only complete messages to an application� If not� t recv

returns all available in�order fragments in the receive queue� For both cases� out of order TPDUs are queued
awaiting arrival of the missing fragments�

��� Error Control

While the AAL � checksum detects corruption and loss within an AAL frame� this� by itself� is not su�cient
for error control� For a reliable connection� not only must corruption and loss be detected� but lost data
must also be retransmitted� This is done at the transport layer�

The fundamental mechanism for dealing with losses is for correctly received data to be acknowledged by
the recipient �thus a reliable transport connection requires a pair of simplex VCs � see Sections 	 and ��� If
an acknowledgment is not received by the sending transport layer for a su�ciently long time� it retransmits
the TPDU�

To allow a receiver to detect duplicate data from retransmissions �which may be arbitrarily delayed�
perhaps extending beyond virtual circuit closedown�� sequence numbers are necessary� The transport layer
uses a standard three way handshake at startup to choose the initial sequence number correctly �
�� We do
not use a two�way handshake for termination� since termination is handled by the signaling layer�

The transport layer uses per�TPDU cumulative acknowledgments for redundancy� Cumulative acknowl�
edgments have the added bene�t that if an acknowledgement sequence number is repeated� the source can

�

� Datalink Layer

The datalink layer corresponds roughly to the ITU�TSS ATM layer� It is responsible for transferring ATM
cells between end�systems over a series of links and switches� At each switch� the datalink layer� imple�
mented in hardware� is responsible for cell switching� cell scheduling and bu�er management� By intelligent
scheduling of the bandwidth and bu�er resources� the datalink layer can provide per�VC QoS at each switch�

On the transmit side� the datalink layer is called from its d send procedure� This �rst checks if the
output line is free� If so� it segments an AAL frame into �	 byte cells and adds a standard � byte ATM
header �in the ITU�TSS framework� this is done by the AAL layer�� If ATM Adaptation Layer � �AAL��
is used� then the last cell header in the frame has the ATM�layer�user to ATM�layer�user �AUU� bit set ����
The datalink layer also adds a per�cell header checksum�

If the output line is busy� then incoming data is queued� When the data is actually sent depends on the
available hardware� If the hardware interrupts after cell completion� then the interrupt routine can schedule
the datalink send task� If the hardware supports polling� then the scheduler must spin testing for the busy
to idle transition� If the hardware has an onboard processor� then this processor can simply poll the datalink
queue and asynchronously transfer data�

On the receive side� the interrupt routine copies the data from the hardware into network bu�ers and
schedules the datalink layer�s d schedule recv task� The datalink layer maintains a number of per�virtual
circuit reassembly queues� When the receive task is run� it checks the incoming cell�s header checksum� and
if it is invalid� discards the cell� or else adds it to its corresponding queue� The transport layer�s receive task
is scheduled when a cell with the AAU bit is seen�

When the IDLInet datalink layer is implemented over a an Ethernet link� a cell to be transmitted is
encapsulated into an Ethernet frame and handed to the Ethernet MAC layer for transmission� On the receive
side� the Ethernet header is stripped and the cell is handed to the datalink layer for normal processing� In
order to provide a worst�case delay bound� peer data link layers coordinate access to the shared link by
exchanging tokens� The datalink layer is allowed to transmit only after receipt of an Ethernet frame� If
there is nothing to send� then a token is transmitted� Each endpoint of the link sets a timer every time it
sends a frame� and the endpoint with the lower Ethernet address regenerates a token if no token or data
frame is received before the timeout� This ensures robust operation of the link even if tokens are corrupted
or lost� A link failure is detected if there is no activity for three consecutive timeouts�

	 Network Layer

The network layer corresponds to the ITU�TSS ATM Adaptation Layer �AAL�� At the moment� IDLInet
supports only AAL � ���� AAL � provides the abstraction of an end�to�end pipe that can detect lost or
corrupted data� This is done by adding a trailer containing a
 bit data CRC and a �� bit length �eld�

On the transmit side� the network layer is called from its a send procedure� This procedure takes a
Transport data unit �TPDU�� adds the AAL trailer� and calls the datalink layer d send procedure� On the
receive side� the network layer�s a recv procedure is called from the transport layer�s receive task only when
it is known that an AAL � frame is ready to be received� Thus� the procedure simply picks up the completed
AAL frame from the datalink layer and checks it for correctness� Correct frames are handed to the transport
layer� In the current version of the semantics� incorrect AAL frames are discarded� though we planning to
pass up errored AALs for error�tolerant applications�

Though IDLInet implements the datalink and network layers in software so that cheap non�ATM in�
terfaces can be used to emulate an ATM network� in practice� these two layers would be implemented in
hardware on a host adaptor board� We have found it straightforward to provide a software wrapper �at least
for the FORE �� series ATM card� that provides the same interface to the transport layer as the IDLInet

�

In this section� we will present an intuitive understanding of how the stack works� We describe how data
moves through the protocol stack �see Figure �� and how applications can use the stack to set up QoS
provisioned virtual circuits�

It is easiest to understand the operation of the stack by looking at its building blocks� procedures	 tasks
and a task scheduler� A procedure is identical to a C procedure� A task is a non�blocking and re�entrant
piece of executable code that shares an address space with the other tasks in the system� The task scheduler
registers tasks and launches ready tasks one by one� The called task may� in turn� register other tasks or
timeouts with the scheduler� Thus� the basic control loop in the system is for the scheduler to increment time�
check for timeouts� and then schedule the next ready task� Each layer in the protocol stack is implemented
as a set of procedures and tasks� as described below�

Let us trace the movement of data when an application wants to send data on a virtual circuit� An applica�
tion sends data by calling the session layer�s send procedure� which in turn calls the transport layer�s t send

procedure� This copies the application data into local bu�ers �crossing the user�kernel boundary if necessary��
schedules the transport layer�s t schedule send task� and returns� At some point� the t schedule send

task is launched by the task scheduler� and it decides which transport data units �TPDUs� are ready for
transmission �based on open or closed loop �ow control�� If some TPDU is available� the AAL layer�s a send

procedure is called� which appends an AAL trailer and calls the d send procedure to actually send the data�
If the output line is free� d send sends the data right away� otherwise it queues the data and returns� When
the line becomes free� the d schedule send task is called� which dequeues data and transmits it� If the host
adaptor has its own CPU� it can poll the datalink layer queue� eliminating the need for d schedule send�
Note that there are only two copies in the stack� once from application space to the stack�s internal bu�ers�
and once from these bu�ers to the physical link�

On the receive side� when data is received� the interrupt routine copies data from the link into a bu�er
and schedules the datalink layer�s d schedule recv task� This assembles cells into per�VC bu�ers� and if
the last cell of an AAL � frame is seen� schedules the transport layer�s t schedule recv task� When the
transport task is run� it calls the AAL layer�s a recv procedure� which removes an AAL frame and checks
its correctness� If it is a valid frame� the data is placed in the transport layer�s bu�ers� When an application
wants to receive data� it calls the session layer�s recv procedure� which in turn calls the transport layer�s
t recv procedure� This simply copies out fully received messages into application bu�ers� Note again that
there are only two copies in the receive path � once from the link to the network bu�ers� and once from the
network bu�ers to the application�

If the transport layer cannot send data due to �ow control or lack of tokens in the leaky bucket� it
schedules a t timeout task� This is called by the task scheduler when the timer expires� By providing cheap
timers to all the protocol layers� the protocol stack scheduler considerably simpli�es the implementation�

So far� we have only discussed how data moves in the stack� Before this can happen� a virtual circuit
must be established on behalf of the application� We now brie�y describe how this happens� details can be
found in ���

The key player in setting up calls is the signaling entity� This entity allows servers to register services
with it� When a client wishes to set up a VC to a server� the signaling entity creates a signaling message and
sends it to a peer in the switch controller� The switch controller performs admission control and forwards
the call to the next switch controller on the path to the destination� Eventually� the signaling entity at the
remote end is contacted� and if the application accepts the call� the VC is set up between the client and the
server� A client passes a QoS speci�cation to the signaling entity� and this is made available to both local
and remote protocol stacks� so that per�VC QoS can be provided by both end systems�

Having presented an overview of the stack� we now describe each protocol layer in turn�

�

Figure �� Control �ow in data plane�

�

APPLICATION

DATALINK

NETWORK

TRANSPORT

S
I
G
N
A
L
L
I
N
G

VCI

PHYSICAL

R
O
U
T
I
N
G

SESSION

 (AAL)

(ATM)

Figure �� Overall view of the native mode stack� The vertical grey bar indicates that there is no logical multiplexing

in the stack�

receiver� Finally� multicast support allows a source to send data to a more than one receiver� By putting
together a combination of these services� an application can customize the service interface it wants from
the protocol stack�

Currently� we support three combinations of the above services� These are �guaranteed�performance
service�� �reliable service� and �best�e�ort service�� Guaranteed�performance service provides open�loop
�ow control� and simplex or duplex multicast connections� There is no error control� An application�s QoS
speci�cations are made available to the network� allowing it to reserve resources for each VC�

Reliable service provides error control� feedback �ow control and simplex and duplex connections� Multi�
cast is not allowed� nor are QoS guarantees supported� Best�e�ort service provides only the choice of unicast
or multicast service� With this service� there is no �ow control� error control or provision of QoS guarantees�
We will develop other services derived from the four basic services above� as the need arises�

In addition to the four services described above� some other services are also available� �� arbitrary size
application data units �� a choice of blocking and non�blocking application interface and �� a choice of byte
stream and message transfer abstractions� These services make it easier to port applications developed using
the TCP�IP stack to the native�mode ATM stack�

We now describe the semantics and implementation of a protocol stack �Figure �� that provides the
services described above� We will start with bird�s eye view of the entire stack� and then describe the
semantics layer by layer�

Note that the description of each layer in this paper conforms to the OSI standard� instead of the ITU�TSS
layering� From this perspective� the datalink layer is the same as the ATM layer� and the network layer is
the same as the ATM Adaptation Layer� Note also that the �ow control functionality of the transport layer
is usually performed by the host adaptor or Network Interface Unit in most current designs�

� Overview

two endpoint operating systems� enabling intelligent per�VC scheduling of critical resources� Second� there
are fewer header overheads since any header information that does not change per protocol data unit can
be made part of call setup� Third� it is possible to customize the semantics of the protocol stack per virtual
circuit� if that proves necessary �for example� the service given to a control VC could be di�erent from that
given to a data VC at every layer of the protocol stack�� Fourth� the Virtual Circuit Identi�er �VCI� provides
a single small index into a table of protocol control blocks� considerably simplifying the software structure�
Finally� an end�system supporting multiple QoS�sensitive streams need not be designed to support the most
demanding QoS� since less demanding streams can be isolated from more demanding streams�

We believe that a protocol stack should have the minimal functionality necessary to provide a simple
abstraction of the underlying communication network� The arguments in support of this position are similar
to those used by operating system designers in support of a micro�kernel architecture� namely� a small� clean
design leads to improved performance� In addition� the protocol stack becomes easy to specify� understand�
implement and verify� In order to achieve the goal of a limited� clean design� we have designed the protocol
stack and its service interface from �rst principles� selecting the best mechanisms from existing protocols�
The key strategy is to design the stack as a whole� rather than layer by layer� this allows us to remove
redundancy in layer functionality�

Finally� the protocol stack is designed to �t into existing ATM standards� The network layer is ATM
Adaptation Layer �AAL� �� so the stack does not re�implement AAL � functionality� such as data checksum�
ming� in the transport layer� Also� the stack supports per�VC state and interfaces to ATM signaling� This
gives the control plane access to the protocol stack at connection establishment and QoS renegotiation time�
For example� a particular VC may require low delay and a high bandwidth data transfer� This information is
passed to the transport and datalink layers by the signaling interface at the time of call setup� During data
transfer� con�icting performance requirements can be resolved� and the QoS attributes of each VCI taken
into account when scheduling critical system resources �this resolution has not yet been implemented��

� Design Requirements

The protocol stack bridges the gap between applications and the network� It provides some set of services
�such as duplex reliable data transfer� to applications� and makes some tra�c guarantees �such as leaky
bucket conformance� to the network� This set of services and guarantees together constitute the design
requirements of the protocol stack�

The set of services provided by the protocol stack should match the anticipated application workload� We
believe that ATM networks will need to support continuous media applications� which need QoS guarantees
from the network �expressed in terms of deterministic or statistical guarantees of minimum bandwidth�
priority� end�to�end delay and loss rate�� while conforming to some tra�c envelope ���� We would also like
to support data applications� which e�ectively need a zero loss rate� Still other applications may require a
raw bit�stream abstraction upon which they can build custom �ow and error control mechanisms�

Instead of providing a service corresponding to each anticipated application workload� we provide a set
of orthogonal services which can be combined in order to match application requirements� The four major
services are� �� simplex and duplex data transfer � error control
� open�loop and feedback �ow control and
�� multicast� The �rst service is simply to move data� but this data may have errors� and is not subject
to any �ow control� The second service adds error control to the data movement� By this we mean that
data stream seen by an application will have zero loss rate �possibly after retransmissions� and a corruption
rate below some vanishingly small threshold� If the corruption rate is unacceptable� or if retransmissions are
too slow� applications have the option of implementing Forward Error Control� The next service adds �ow
control� Open�loop �ow control means that an application will have its tra�c shaped to conform to some
pre�speci�ed envelope �negotiated during call setup�� Feedback �ow control implies that the transport layer
will attempt to match the application�s �ow rate to the current bottleneck service rate in the network or

Semantics and Implementation of a Native�Mode ATM
Protocol Stack

S� Keshav� AT�T Bell Laboratories� Murray Hill� NJ ������ USA
H� Saran� Indian Institute of Technology� Hauz Khas� New Delhi� ������� India

Abstract

We describe the semantics and implementation of a protocol stack that gives applications access to the
Quality of Service guarantees available at the ATM level �a native�mode ATM protocol stack�� The stack
was designed using three principles� minimal functionality in the critical path	 no logical multiplexing	 and
speci�c targeting to ATM� It allows applications to establish simplex or duplex virtual circuits with error
control� leaky�bucket or feedback �ow control and arbitrary size messages� In addition� a signaling component
provides connection and Quality of Service management� The stack has been implemented in a simulator
and two networks of Personal Computers interconnected respectively with Ethernet and ATM adaptors� We
discuss our experiences with developing and porting the stack� and show how our design principles lead to
rapid deployment as well as a small protocol overhead�

� Introduction

A strong motivation for building ATM networks is that they can provide per�virtual circuit �VC� end�to�
end Quality of Service �QoS� guarantees� This advantage is lost if the per�VC guarantees are hidden from
applications due to interposition of connectionless layers �such as IP� or if streams with disparate QoS
requirements are multiplexed together� We call a protocol stack that allows applications to access ATM
level QoS guarantees a native�mode ATM protocol stack� This paper describes the semantics of native�mode
ATM stack developed for the IIT� Delhi Low�cost Integrated testbed �IDLInet��

IDLInet is inexpensive testbed for studying protocol design issues in ATM networks� The testbed has been
implemented on three platforms� a packet�level network simulator ��
�� a network of Personal Computers
�PCs� running the MS�DOS operating system and interconnected by Ethernet� and a network of PCs running
the Plan � ��	� ��� operating system interconnected with Fore Systems� ATM adaptors and FORE switches�
Since the system was �rst developed on the simulator and then ported to the other systems� the software on
all three platforms is nearly identical� Hence� we will discuss only the simulator version in this paper�

The paper is laid out as follows� Section presents the design principles used in our work� and Section

 describes the services provided by the stack� This is followed by an overview of the operation of the stack
in Section �� Sections ��� describe each protocol layer in detail� Finally� Section �� presents current status�
and Section �� discusses related work�

� Design Principles

Our design is based on a few consistently applied design principles� no logical multiplexing� minimal func�
tionality in the data path� and speci�c targeting to ATM� We discuss these in turn below�

Logical multiplexing refers to the mapping of multiple streams of layer n of the protocol stack into a single
stream at layer n�� ��� �this is sometimes called layered multiplexing�� IDLInet does not logically multiplex
connections� there is only physical multiplexing of the virtual circuits at the lowest layer� This has several
advantages ��� 	�� First� per�application QoS requirements can be communicated both to the network and the

�

