Agenda

- Overview

- Deep(er) dives
 - Energy-optimal routing in RPL
 - Smart home data management
 - Telemetry for e-bikes
 - Personal thermal comfort
Today’s Energy Infrastructure
Mostly dirty...
Overprovisioned by design

http://ieso-public.sharepoint.com/
Inefficient

More than two-thirds of the fuel used to generate power in the U.S. is lost as heat

http://www.oe.energy.gov/
Wasteful...
5% better efficiency of US grid
= zero emission from 53 million cars
Aging

Post-war infrastructure is reaching EOL
Poorly measured
Poorly controlled
Times are changing...
Three technology inflection points

- Solar and wind renewable generation
- Storage and EVs
- Pervasive sensing and control
Price history of silicon PV cells in $ per watt

$76.67

Source: Bloomberg, New Energy Finance & pv.energytrend.com
Solar installations each year

Cell phone subscribers (cumulative)

http://stats.areppim.com/stats/stats_mobile.htm
Solar PV is **growing faster than cell phones!**
Storage

Global investment to reach $122 Billion by 2021 – Pike Research

LiON Declining. $600 down to <$200
Electric vehicles

- Spur research on lower-cost storage

Nissan Leaf chassis
Pervasive sensing
+ pervasive computation

Freescale KL02 microcontroller 1.9 mm x 2.0 mm
allows pervasive control
Current energy systems Smart energy systems

- Fossil-fuel based • Renewables-based
- High carbon • Low carbon
- Little to no storage • Storage rich
- Poorly measured • Sensing rich
- Poorly controlled • Control rich

Inefficient • *Energy frugal*
OK, we’re done, right?
Maybe not...
1. Need storage...
... but it is expensive!

- Buying 1 KWh = 10c
- Storing 1 KWh = ~$450!
2. Need control over many time scales
3. Consumers have no incentive to save

- Energy savings of 10%
- $10/month
4. Utilities have no incentive to be efficient!
5. Energy data is personal
6. Sensors are energy-limited
7. EV sales are tiny

EV fraction of vehicle fleet in 2014: 0.1%
Mission

To use information systems and science to
- increase the efficiency
- reduce the carbon footprint

of energy systems
3 Approaches

1. Exploiting equivalency of grid and Internet
2. Designing and building prototype energy systems
3. Mining big data
Grid Internet

Electrons = Bits
Load = Source
Transmission line = Communication link
Battery/energy store = Buffer
Demand response = Congestion control
Transmission network = Tier 1 ISP
Distribution network = Tier 2/3 ISP
Stochastic generator = Variable bit rate source
Analytic results

- Transformer sizing
- Optimal control for EV charging
- Minimizing storage size to smooth solar/wind sources
- Optimal participation of a solar or wind farm in day-ahead energy markets
- Modeling of imperfect storage devices and solar power
- Optimal operation of diesel generators to deal with power cuts in developing countries

Joint work with O. Ardakanian, Y. Ghiassi-Farrokhfal, S. Singla, and C. Rosenberg
Mining big data

- Analysis of
 - hourly electricity data from ~26,000 meters (>100 GB)
 - hourly water data from ~27,000 meters (> 100GB)
 - PV and load data every second for 3 months
 - 7 years of carshare rental data
 - 10s of thousands of opinions on EV forums
 - 25+ GB of transportation data
 - ...
Conclusions

- Technology is *changing* the energy infrastructure
- Computer Science has a role to play
- Opportunity for *interesting, impactful* research

Acknowledgements
ISS4E Faculty

Co-Director

Affiliated faculty
ISS4E students
Funding agencies

NSERC

Canada Research Chairs

Chaires de recherche du Canada

INNOVATION.CA

Canada Foundation for Innovation

Ontario

Fondation canadienne pour l'innovation

EU
Corporate sponsors

- Cisco
- Hydro One
- Microsoft
- IBM
Agenda

- Overview
- Deep(er) dives
 - Energy-optimal routing in RPL
 - Smart home data management
 - Telemetry for e-bikes
 - Personal thermal comfort
Backup slides
FOSSIL FUELS ARE EXPRESSED WITH REGARD TO THEIR TOTAL RESERVES WHILE RENEWABLE ENERGIES ARE TO THEIR YEARLY POTENTIAL.

source: DLR, IEA WEO, EPIA’s own calculations.
Table showing average cost in cents/kWh over 20 years for solar power panels

<table>
<thead>
<tr>
<th>Cost</th>
<th>2400 kWh/kWp·y</th>
<th>2200 kWh/kWp·y</th>
<th>2000 kWh/kWp·y</th>
<th>1800 kWh/kWp·y</th>
<th>1600 kWh/kWp·y</th>
<th>1400 kWh/kWp·y</th>
<th>1200 kWh/kWp·y</th>
<th>1000 kWh/kWp·y</th>
<th>800 kWh/kWp·y</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 $/kWp</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
<td>1.7</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>600 $/kWp</td>
<td>2.5</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>3.8</td>
<td>4.3</td>
<td>5.0</td>
<td>6.0</td>
<td>7.5</td>
</tr>
<tr>
<td>1000 $/kWp</td>
<td>4.2</td>
<td>4.5</td>
<td>5.0</td>
<td>5.6</td>
<td>6.3</td>
<td>7.1</td>
<td>8.3</td>
<td>10.0</td>
<td>12.5</td>
</tr>
<tr>
<td>1400 $/kWp</td>
<td>5.8</td>
<td>6.4</td>
<td>7.0</td>
<td>7.8</td>
<td>8.8</td>
<td>10.0</td>
<td>11.7</td>
<td>14.0</td>
<td>17.5</td>
</tr>
<tr>
<td>1800 $/kWp</td>
<td>7.5</td>
<td>8.2</td>
<td>9.0</td>
<td>10.0</td>
<td>11.3</td>
<td>12.9</td>
<td>15.0</td>
<td>18.0</td>
<td>22.5</td>
</tr>
<tr>
<td>2200 $/kWp</td>
<td>9.2</td>
<td>10.0</td>
<td>11.0</td>
<td>12.2</td>
<td>13.8</td>
<td>15.7</td>
<td>18.3</td>
<td>22.0</td>
<td>27.5</td>
</tr>
<tr>
<td>2600 $/kWp</td>
<td>10.8</td>
<td>11.8</td>
<td>13.0</td>
<td>14.4</td>
<td>16.3</td>
<td>18.6</td>
<td>21.7</td>
<td>26.0</td>
<td>32.5</td>
</tr>
<tr>
<td>3000 $/kWp</td>
<td>12.5</td>
<td>13.6</td>
<td>15.0</td>
<td>16.7</td>
<td>18.8</td>
<td>21.4</td>
<td>25.0</td>
<td>30.0</td>
<td>37.5</td>
</tr>
<tr>
<td>3400 $/kWp</td>
<td>14.2</td>
<td>15.5</td>
<td>17.0</td>
<td>18.9</td>
<td>21.3</td>
<td>24.3</td>
<td>28.3</td>
<td>34.0</td>
<td>42.5</td>
</tr>
<tr>
<td>3800 $/kWp</td>
<td>15.8</td>
<td>17.3</td>
<td>19.0</td>
<td>21.1</td>
<td>23.8</td>
<td>27.1</td>
<td>31.7</td>
<td>38.0</td>
<td>47.5</td>
</tr>
<tr>
<td>4200 $/kWp</td>
<td>17.5</td>
<td>19.1</td>
<td>21.0</td>
<td>23.3</td>
<td>26.3</td>
<td>30.0</td>
<td>35.0</td>
<td>42.0</td>
<td>52.5</td>
</tr>
<tr>
<td>4600 $/kWp</td>
<td>19.2</td>
<td>20.9</td>
<td>23.0</td>
<td>25.6</td>
<td>28.8</td>
<td>32.9</td>
<td>38.3</td>
<td>46.0</td>
<td>57.5</td>
</tr>
<tr>
<td>5000 $/kWp</td>
<td>20.8</td>
<td>22.7</td>
<td>25.0</td>
<td>27.8</td>
<td>31.3</td>
<td>35.7</td>
<td>41.7</td>
<td>50.0</td>
<td>62.5</td>
</tr>
</tbody>
</table>
Storage

“Bytes”
Energy density

“Bits/s”
Power density