Design Principles for Robust Opportunistic Communication

S. Keshav
Tetherless Computing Lab
David R. Cheriton School of Computer Science
University of Waterloo
January 2009
Waterloo?

Where is that?
Home of:
Seagram
RIM/Blackberry
Maple
OpenText
ManuLife; SunLife
Outline

- The context for opportunistic communication
- Some opportunistic applications
- Requirements
- Architecture
- Techniques to achieve robustness
- Conclusions
1. Computing costs are plummeting

Processor costs have come down by six orders of magnitude in three decades

CMOS allows on-chip logic, memory, imaging and RF components

Devices will merge computing, audio, and video
 • Processor
 • RAM
 • Flash memory
 • Cell phone modem
 • Still camera
 • Video camera
 • MP3 player

*From www.icknowledge.com
2. Wireless networks are proliferating
3. Data Centers aggregate resources
Where will this lead?

- Ubiquitous mobile devices will communicate with resource-rich data centers over wireless and wireline networks.
Outline

- Context
- Some opportunistic applications
- Requirements
- Architecture
- Techniques to achieve robustness
- Conclusions
Assume

- … that any mobile node can opportunistically communicate with any other node, fixed or mobile
Application 1: Wireless P2P video

- Shoot
- Create metadata (‘tag’)
- Segment
- Flood ‘want’ and ‘have’ metadata
- Route data
- Re-assemble
- Enjoy!
Application 2: Drive through Internet

- Roadside WiFi APs can upload and download data
 - up to 50 MB at 110 kmph
- Upload pictures and videos
 - potholes
 - construction sites
- Download pictures and videos
 - real estate
Application 3: KioskNet
Outline

- The context for opportunistic communication
- Some opportunistic applications
- Requirements
- Architecture
- Techniques to achieve robustness
- Conclusions
Requirements

Assume applications are tolerant to both delay and delay variance

- Should not require human intervention
- Should recover from disconnections
- Should support bulk data transfer
- Should be low cost
- Should be legacy compatible
 - minimal change to clients and servers
 - no change to TCP or IP
Additional requirements

- Should minimize device power usage
- Should maximize use of communication opportunity
- Should support both single and multi-hop communication
- Should provide over-the-air security
What makes this hard?

- Disconnection is first class
 - what does routing mean on a temporal graph?
- Affects every layer of the protocol stack
Outline

- The context for opportunistic communication
- Some opportunistic applications
- Requirements
- Architecture
- Techniques to achieve robustness
- Conclusions
Overview
Architecture
Outline

- Context
- Some opportunistic applications
- Requirements
- Architecture
- Design principles for robustness
- Conclusions
Gaining robustness

- **MAC**
 - Avoid the fringe
 - Avoid performance coupling

- **Network**
 - Flooding-based routing
 - Priority for less-replicated data items
 - Death certificates

- **Transport**
 - Hop-by-hop TCP

- **Application**
 - Directories

- **Overall**
 - Use databases for volatile state
 - Route detection and dissemination
 - Choose simpler solutions
Avoid the fringe
Avoid performance coupling
Flooding-based routing
Priority for less-replicated data items
Death certificates
Hop by hop TCP

- TCP hop by hop instead of end-to-end
- Allows recovery from wireless errors
 - One socket’s worth of buffers may need retransmission
Directory-based API
Databases for volatile state

- State
 - Cached values in RAM
 - Persistent values in database

On reboot, restore cache from db
Route detection and dissemination

For scheduled services

- Each device keeps track of sequence of other devices visited and visited times
- Schedules are automatically computed
 - Deviations can be detected and debugged
Use simpler solutions

- Initial version used complex systems: DHT, HIBC, flat names
- Tried and tested solutions worked better!
 - DNS
 - PKI
 - Hierarchical names
Outline

- Context
- Some opportunistic applications
- Requirements
- Architecture
- Design principles for robustness
- Conclusions
Summary

- Opportunistic communication allows new \textit{classes} of applications
- But affects every layer of the protocol stack
- We have developed general design principles for robust opportunistic communication
 - at different layers
 - overall
Thank you!

- **Graduate interns**: R. Luk, Z. Koradia
- **Staff Programmer**: D. Kroeker, M. Derakhshani
- **Affiliated Faculty**: T. Brecht (UW), U. Hengartner (UW), S. Prasad (IIT Delhi), H. Saran (IIT Delhi)
- **Staff support**: G. Chopiak