
On Hourly Home Peak Load Prediction
Rayman Preet Singh, Peter Xiang Gao and Daniel J. Lizotte

School of Computer Science
University of Waterloo

{rmmathar, x33gao, dlizotte}@uwaterloo.ca

Abstract—The Ontario electrical grid is sized to meet peak
electricity load. A reduction in peak load would allow deferring
large infrastructural costs of additional power plants, thereby
lowering generation cost and electricity prices. Proposed solutions
for peak load reduction include demand response and storage.
Both these solutions require accurate prediction of a home’s peak
and mean load. Existing work has focused only on mean load
prediction. We find that these methods exhibit high error when
predicting peak load. Moreover, a home’s historic peak load and
occupancy is a better predictor of peak load than observable
physical characteristics such as temperature and season. We
explore the use of Seasonal Auto Regressive Moving Average
(SARMA) for peak load prediction and find that it has 30%
lower root mean square error than best known prior methods.

I. INTRODUCTION

Peak load is the highest aggregate demand (or load) for
electric power in a certain area within a certain time frame.
Generally, the peak load is observed for a relatively small
duration of time. In 2009, the annual peak load in Ontario,
Canada occurred less than 1% of the time [2]. To meet
this peak load, additional power plants have to be put into
operation. These are more flexible but less efficient than
conventional plants, and bear higher infrastructural and carbon
costs. Hence if the peak load were reduced, it would lower the
cost of generating electricity and its prices. The Government
of Ontario plans to spend $12 billion over the next 20 years
on peak load reduction [3].

In Ontario, the peak load of the residential sector is the
largest contributor to the province’s total peak load [5].
The adoption of electric vehicles by residential consumers
threatens to further increase the peak load [7]. Consequently,
aided by wide-scale smart meter deployment, the following
methods are being proposed to reduce peak load. Distributed
storage involves residential consumers storing electricity using
in-home batteries during off-peak periods and consuming it
during peak periods [9], [23]. In another method, known as
demand-response, consumers’ appliances are made to change
their time of operation (e.g. defer use of dishwashers to off-
peak periods). However, to be useful, both these approaches
require an accurate model to predict each home’s load. Further,
as most grid operations such as generation scheduling and
pricing are conducted on an hourly scale [25], a model for
predicting home load on a timescale of an hour or less is
required.

To develop a parsimonious predictive model for home load,
we investigate the use of machine learning techniques. Our
goal is to build a model that uses observable characteristics

such as a home’s past load values, day, time, season and
weather associated with their occurrence, to predict the next
hour’s peak load. No prior work has considered prediction of
hourly home peak load.

We make the following key contributions:
• We quantify the effectiveness of regression-based tech-

niques in predicting hourly home peak load.
• We demonstrate that for hourly prediction history-based

observables are more significant than physical observ-
ables such as temperature.

• We show that Seasonal Auto-Regressive Moving Average
(SARMA) can be used to model both the intrinsic load
pattern and consumer activity in a home, and that it incurs
30% lower error than regression-based techniques.

In Section II we provide relevant background and an
overview of related work, followed by a description of our
dataset and methodology in Section III and IV. We evaluate
our approach in Section V followed by a discussion of its
implications in Section VI, and conclusion in Section VII.

II. BACKGROUND, MOTIVATION AND RELATED WORK

A. Background

Energy consumption of a home is driven by consumers’
activity. Peak load of a home bounds its energy consumption
(or mean load) for any given timescale. Thus applications
like demand response can use peak load prediction to better
understand and limit demand without affecting consumer
comfort. Similarly, if peak demand can be predicted, home
storage can be charged/discharged intelligently, leading to
better utilization.

Microgrid initiatives aim to build a sustainable subsystem
for energy consumption using distributed sources like in-home
wind turbines, solar panels, and batteries, in conjunction with
conventional generators. A home peak load prediction method
can then be used for automated coordination amongst these
different sources. These wide ranging applications motivate
us to build a home peak load prediction mechanism.

The 95th percentile, denoted p95, is widely used to measure
capacity in various applications such as transformer sizing,
Internet bandwidth calculations, and ISP billings. Hence we
define the hourly peak load yt of a home as the 95th percentile
of all measured load values during the hour t.

B. Applications of Peak Load Prediction

We now elaborate on the potential applications of home
peak load prediction and their significance.



Demand Response and Storage Demand response involves
peak load reduction by changing consumption patterns by
varying pricing policies, or by transferring control of home
appliances to the grid. Examples include time of use pricing
[4] and the PeakSaver1 program. Hence, the grid can employ
home peak load prediction to understand each home’s future
peak load and use it for dynamic pricing and scheduling
appliance loads.

Storage aims to reduce peak load by allowing homes to
consume stored energy during peak hours. Using home peak
load prediction, energy can be stored and consumed in a way
that serves the grid’s interests while maximizing consumer
comfort.

Microgrids In contrast to the centralized grid, microgrids
are localized groups of generation, storage and loads, pre-
dominantly employing renewables with on-site generators as
backup. Examples include Fort Bragg2, NC. Since the generat-
ing capacity in micro grids is limited, peak load prediction can
be used to store energy whenever a larger peak is anticipated
the next day.

Abnormal Consumption Detection Abnormal events are
the leading cause of wasteful energy consumption in a home
[12]. For example, the oven is left turned on after dinner, or
the refrigerator door is left open. Home peak load prediction
in coordination with machine learning methods can be used
to detect such events. For instance, whenever the actual peak
load exceeds the predicted peak, the consumer can be alerted
and her response can be used to train the system.

C. Related Work

Previous research has focused on predicting energy con-
sumption or mean load of a geographical region, city block
or a commercial building [11], [14], [19], [20], [24], [27].
Likewise, researchers have studied peak load prediction for
geographical areas or cities. The problem of predicting peak
load on a relatively small scale such as a home, has largely
been overlooked as its applications are only now beginning
to appear. Similarly, peak load prediction on a relatively large
time-scale such as a day, week or year has been explored by
previous work [14]–[17], [19] but such mechanisms do not
suffice for the applications discussed above.

Weather, temperature, and seasonality have been shown to
significantly affect energy consumption of a region [19], [24],
which motivates us to explore its effect on hourly peak load.
Edwards et al. [13] investigate the accuracy of various ma-
chine learning techniques including Support Vector Regression
(SVR), Least Squares Support Vector Machines (LS-SVM), and
Artificial Neural Networks (ANN) for predicting hourly home
energy consumption (mean load). Edwards et al. report that
SVR and LS-SVR are most accurate, but they do not reveal the
features used. This motivates us to explore possible features
for hourly peak load prediction.

1https://www.peaksaver.com/
2http://www.army.mil/article/68234/

III. DATASET

Our dataset comprises aggregate load values of 24 homes in
the Kitchener-Waterloo area, measured for a period of one year
(February 2011-January 2012), sampled every six seconds.
The Current Cost Envi Device [1] is used for measurement.
The measured values are stored temporarily on a netbook and
uploaded daily to our data collection server. We record ambient
air temperature values published by the University of Waterloo
Weather Station [6] and compute hourly average values.

IV. PREDICTION MODELS

We now the describe the two types of prediction models
that we employ: Regression based and Time Series based.

A. Regression

We define a set of 5 relevant features of each measured
peak load value yt, to capture different properties that we
believe drive peak load. Their motivation, physical meaning
and definition are as follows:

1) Time of Day (x1t ): In a home, consumers’ occupancy and
activities typically follows an underlying routine. For
instance, typical consumers cook food during morning
and evening hours, use air conditioning in the afternoon,
and run their dishwasher in the evening. This intrinsic
pattern is likely to repeat across different days. In
relation to hourly peak load yt, we define time of day
(x1t ) as a feature, where x1t ∈ {1, 2 . . . 24}.

2) Day of week (x2t ): Consumer occupancy and activity
patterns vary vastly on weekend days (Saturday, Sunday)
as compared to weekdays (Monday- Friday). Hence, in
addition to considering the time t of the peak load yt,
we define the day of the week (x2t ) as a feature, where
x2t ∈ {1, 2, . . . 7} .

3) Ambient temperature (x3t ): Weather and seasonality has
been shown to affect energy consumption and has been
used to model it. This is due to consumer use of air
conditioning and electric heaters in warm and cold
weather respectively. Extending this approach, we define
x3t as the average ambient air temperature, and use it
as a feature for the (t + 1)th hour because x3t is not
observable until the (t+ 1)th hour.

4) Variance (x4t ): Most consumer appliances cycle through
different modes of operation and have varying con-
sumption. Examples include washers, dryers, microwave
ovens and refrigerators. When in operation these dif-
ferent modes of operation cause a large variation in
the appliance’s and the home’s load. Hence, to capture
consumer activity we define the variance of measured
load values during the (t−1)th hour as a feature x4t for
hour t.

5) Last peak load (x5t ): A consumer’s activity period typ-
ically spans across hours. Hence, a consumer is more
likely to cause a high hourly peak load if the previous
hour’s peak load was also high due to her activity. This
is supported by our dataset: we find a high correlation
(0.52) between consecutive hours’ peak load values.



We define the following encoding to encode the time of
day (x1t ) and day of week (x2t ) features. Day of week (x2t ) is
encoded as x̃2

t = (x̃2t,1, x̃
2
t,2, x̃

2
t,3, x̃

2
t,4, x̃

2
t,5, x̃

2
t,6, x̃

2
t,7) where

x̃2t,i =

{
1, if i = x2t ,

0, otherwise

Hence, Tuesday is represented as x̃2
t = (0, 1, 0, 0, 0, 0, 0).

The hour of day (x1t ) is encoded similarly. Such encoding
decorrelates consecutive hours and days, allowing the model
to predict from a wider range of values. Throughout the
remainder of the paper, we shall use x1t and x2t to denote
their respective encoded forms.

Given the feature vector, xt = {x1t , x2t , x3t , x4t , x5t} of hour
t, we use the following nonlinear regression based techniques
to find a function f(·), such that, yt ≈ f(xt). To obtain f , we
use the following techniques:

1) Support Vector Regression (SVR): SVR expresses f as a
nonlinear function of the input xt together with a subset
of support vectors taken from the dataset [22]. The
nonlinear mapping is defined by a kernel function and
its parameters. The loss criterion of SVR is ε-insensitive,
meaning that the function is not penalized for training
data that are predicted within ε of their correct value.

2) Least Squares Support Vector Regression (LS-SVR):
This approach operates in a fashion similar to SVR
but has two important differences. First, all of the
training data are used as support vectors. Second, the
loss criterion is the sum of squared differences between
all observed and predicted peak loads. LS-SVR is more
commonly known as Gaussian process regression [21].

3) Artificial Neural Networks (ANN): This non-linear re-
gression approach learns a function expressed in terms
of hidden units that transform the input features [8]. In
our experiments we use 10 hidden units.

To evaluate the contribution of the physical features
(x1t , x

2
t , x

3
t ) and the history-based features (x4t , x

5
t ) towards

predictive accuracy, we measure their cross-validation errors.
As an example, we illustrate their impact on the accuracy
of SVR. Figure 1 shows the feature analysis for peak load
prediction for one home, using a polynomial kernel (degree
3) and varying γ the regularization parameter. Increasing γ
corresponds to fitting the training data more closely. We defer
the detailed evaluation on our entire dataset to Section V.
From Figure 1 we see that physical features alone perform
much worse than history-based features alone at the optimal
γ value of 5. Moreover, when combined, the improvement over
using history-based features alone (now achieved at γ=0.45)
is slight. This is in sharp contrast to previous work which
has focused only on daily, weekly or monthly load prediction
for cities, blocks or regions. Further, it hints at the possibility
of improvement in prediction accuracy by making better use
of recent history of home load. We accomplish this using
time series methods, which are designed to take advantage of
structure in historical observations to make good predictions.
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Fig. 1. Variation of prediction Root Mean Square Error (RMSE) with varying
γ, which measures the trade-off between training error minimization and
smoothness of the prediction function. Estimates use 10-fold cross-validation.

B. Seasonal Auto-Regressive Moving Average Model

Although there is an observed hidden pattern in home load
owing to routine consumer activity, the lack of knowledge
of consumers’ exact behaviour makes peak load prediction
difficult. This is evident from the low prediction accuracy
obtained by regression based methods. For instance, on some
occasions consumers do their laundry in the morning, causing
under-prediction, or skip cooking dinner, leading to over-
prediction. To model both the routine and stochastic con-
sumer activity, we use the Auto-Regressive Moving Average
(ARMA) model [18]. We denote the measured peak load as a
time series {yt}Tt=1, where yt is the peak load of hour t (p95
of 600 data points in an hour) and T is the total duration of
measurement. The ARMA model decomposes this time series
into two parts: Auto-Regressive (AR) and Moving Average
(MA). Routine consumer activity is captured by the Auto-
Regressive part whereas stochastic activities are captured by
the Moving Average (MA). Essentially, MA is a white noise
process, which traces abrupt fluctuations in the time series
caused by stochastic activities. Further, because consumer
routines follow a daily pattern, we use the Seasonal ARMA
(SARMA) to model the time series.

1) ARMA Model: Given {yt}Tt=1, consider a time series
of white noise {εt}Tt=1, the current observation yt can then
be represented as the linear combination of the current white
noise εt, previous observations {yt−1, ...., yt−p} and white
noise values {εt−1, ...., εt−q}. This forms the ARMA(p, q)
model, defined as:

yt = δ +

p∑
i=1

φiyt−i︸ ︷︷ ︸
AR (routine activities)

+ εt −
q∑

i=1

θiεt−i︸ ︷︷ ︸
MA (stochastic activities)

(1)

where p and q represent the degree or number of previous
timepoints in the model. Variables δ, φi and θi are model
parameters. We define the backshift operator B as

Biyt = yt−i. (2)



Rewriting Eq. (1) using Eq. (2), we get

yt = δ +

(
p∑

i=1

φiB
i

)
yt +

(
1−

q∑
i=1

θiB
i

)
εt. (3)

Let

Φ(B) =

p∑
i=0

φiB
i, Θ(B) = 1−

q∑
i=1

θiB
i. (4)

Rewriting Eq. (3) using Eqs. (4), we get

Φ(B)yt = δ + Θ(B)εt (5)

where εt should satisfy the stationary assumption, which
means εt is independently and identically distributed with zero
mean and constant variance σ2.

2) SARMA Model: Because the hourly peak load follows
a daily periodic pattern, we use the Seasonal Auto-Regressive
Moving Average model to capture the “seasonality”, i.e. peri-
odic variation, in the peak load time series. Note that in our
case seasonality is caused by daily routine rather than weather.
We decompose the time series {yt}Tt=1 into two parts

yt = St +Nt (6)

where St denotes peak load with periodicity s, and Nt denotes
peak load without periodicity. Let s denote the period of St

(24 hours). Hence, St = St+s. Using Eq. (2), we get

St − St−s = (1−Bs)St = 0 (7)

Multiplying Eq. (6) on both sides by 1−Bs,

(1−Bs)yt = (1−Bs)St + (1−Bs)Nt = (1−Bs)Nt (8)

Since (1−Bs)Nt lacks periodicity, we model (1−Bs)yt using
Eq. (4). We have:

Φ(B)(1−Bs)yt = σ + Θ(B)(1−Bs)εt (9)

Parameters δ, φi and θi are found by minimizing ε2t for each
value of t, over the dataset.

V. EXPERIMENTAL EVALUATION

We use the dataset (described in Section III) comprising
load values of 24 homes in the Kitchener-Waterloo area, to
evaluate the prediction models.

A. Regression

We first extract the feature set (described in Section IV-A)
from the dataset. Each feature is then scaled to the range
[−1, 1]. To evaluate prediction accuracy, we divide each
home’s dataset into 10 subsets using randomized sub-selection
and perform a 10-fold cross validation. We use the following
metrics to measure prediction error: Root Mean Square Error
(RMSE) is defined as:

RMSE =

√∑N
t=1(yt − ŷt)2

N

where yt, ŷt are measured and predicted peak load for hour t.

Since RMSE values are not comparable across datasets, we
also define the Normalized Mean Square Error (NMSE):

NMSE =
1
N

∑N
t=1(yt − ŷt)2

Var(yt)
=

MSE

Var(yt)

NMSE consists of the ratio of the Mean Square Error (MSE)
to the variance of a given test set.

We study four different kernel functions: a Linear kernel,
a Polynomial kernel, a Radial Basis Function (RBF) kernel,
and a Sigmoid kernel function using the LIBSVM library [10].
We use the ε-insensitive Vapnik loss function [22], where the
penalty incurred is 0 for error in the range [−ε, ε] and increases
linearly otherwise. We find that the Polynomial kernel function
with degree 3 at ε = 100 provides the most accuracy for
peak load prediction using SVR and LS-SVR in all 24 homes.
However, different optimal γ values are observed in the various
homes. We also compare the performance of SVR and LS-
SVR, with ANN using the same feature set.

Figure 2 shows a comparison between these techniques
using RMSE over all 24 homes’ dataset. We find that LS-
SVR outperforms ANN in 17 homes’ datasets and LS-SVR in
21 homes’ datasets. As shown in Figure 3, similar results are
observed when using NMSE as the metric for prediction error.
When averaged over all homes, LS-SVR provides a RMSE of
900 W and a NMSE of 0.64.

To find the effectiveness of these techniques in predicting
hourly mean load (or energy consumption), we test them
over our dataset using the 10-fold cross-validation technique
described above. Figures 4 and 5 show (using RMSE and
NMSE respectively) a comparison of these techniques in
predicting mean load. As in case of peak load prediction, LS-
SVR outperforms SVR and ANN for mean load prediction.
This validates the finding by Edwards et al. [13] and quantifies
the accuracies of the three methods. However, for each home
both RMSE and NMSE for mean load prediction are lower
than that for peak load prediction. When averaged over all
homes, LS-SVR provides a RMSE of 390 W and a NMSE
of 0.48 when predicting mean load, but a RMSE of 900 W
and NMSE of 0.64 when predicting peak load. These values
establish the ineffectiveness of mean load predictors for peak
load prediction.

We evaluate the contribution of individual features by
incrementally building the feature set starting with x1t , and
measuring the cross-validation RMSE at each step. Shown in
Figure 6 is the variation in RMSE for SVR averaged over all
24 homes’ datasets. Similar results are obtained for LS-SVR;
we omit them due to space limitations. The decrease in RMSE
on adding x2t (day of week) and x3t (ambient temperature)
is significantly smaller than on adding x4t (variance) and x5t
(last peak load) to the feature set. Hence for hourly peak
load prediction, the contribution of the variance and peak load
observed during one hour is more significant for predicting
the next hour’s peak load, than the temperature, time and day.
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B. SARMA

To find the optimal values of parameters p and q in our
ARMA model, we study the Lagged Autocorrelation of the
hourly peak load values (shown in Figure 7). We observe
that values corresponding to the last 5 hours and the 22nd to
25th hours have more significant correlation to peak load than
others. Further, we study the partial correlation of the hourly
peak load (shown in Figure 8). This allows us to observe the
correlation between yt and yt−k with the linear dependence of
yt−1 . . . yt−k−1 eliminated. Optimal values of p and q obtained
using least square error minimization are 5 and 30 respectively.

Since for time series based approaches such as SARMA
cross-validation cannot be performed, we evaluate it by se-
quential prediction over the dataset using the optimal param-
eter values for p and q. Shown in Figures 2 and 3 are the
RMSE and NMSE values for SARMA and their comparison
with SVR and LS-SVR. We observe that SARMA outperforms
all other three approaches-SVR, LS-SVR and ANN. Similar
results are observed for mean load prediction (shown in
Figures 4 and 5). By comparing Figures 2 and Figure 4,
and, Figures 3 and 5, we observe the prediction accuracy
improvement of SARMA is greater for peak load prediction
than for mean load prediction. Hourly mean load bears less
stochasticity than peak load, due to latter’s higher dependence
on consumer activity. SARMA targets stochastic consumer
activities and is more suitable for predicting peak load. Finally,
SARMA provides a peak load prediction RMSE of 685 W
(averaged over all homes), and NMSE improvement of at least
10% in each of the homes’ datasets, and 30% when averaged
over all homes, as compared to LS-SVR.
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VI. DISCUSSION

A. Consumer Activity

From our experiences with home load prediction, we con-
clude that predicting consumer activity is most significant for
home load prediction. This is evident from our comparative
evaluation of the different features. Due to the high temporal
resolution (6 seconds) of our dataset, we were able to use
the variance of measured load values as a coarse indicator of
consumer activity, but better indicators should be investigated.
For example, load disaggregation techniques [26] can be used
to identify operation of specific appliances using the home
load which in turn reflect activity. However, this requires prior
knowledge (or learning) of the various home appliances. We
defer the investigation of these possibilities to future work.

B. Temperature as a SARMA Input

One might expect that a combination of physical and
history-based features might yield even better predictive per-
formance. Therefore, we investigate the use of ambient air
temperature as an input to the SARMA model. We apply
the Auto-Regressive Moving Average with Exogenous Inputs
(ARMAX) model to do so. ARMAX(p, q, r) is defined as:

yt = δ +

p∑
i=1

φiyt−i︸ ︷︷ ︸
Auto−Regressive

+ εt −
q∑

i=1

θiεt−i︸ ︷︷ ︸
Moving Average

+

r∑
i=1

βiTt−i︸ ︷︷ ︸
Exogenous Input

(10)
where {Tt} is the ambient air temperature at hour t, βi, i ∈
{1, . . . , r} are model parameters, and {p, q, r} are the degrees
of the model. Similar to SARMA, the parameters in ARMAX
are obtained by minimizing squared error.

However, we observed that the improvement in prediction
accuracy due to ARMAX is not significant and negative in
certain cases (detailed results omitted due to space limitations).
This is due to the fact that the effect of temperature is
not greatly observable at an hourly or smaller timescale.
Intuitively, a higher temperature is expected to increase the
load due to consumers’ use of air-conditioning and similar
heavy load appliances. Thus the effect of temperature will be
observable on a larger (e.g. daily) timescale because of an
increase in the base load at that timescale. Since the SARMA
model only uses only up to the last 27 hours’ observations, it
fails to capture the effect of temperature on a daily or longer
timescale.

VII. CONCLUSION

We find that existing machine learning methods for hourly
mean load prediction do not perform well for peak load
prediction. Further, when using regression, physical features
like temperature, day and time, which are helpful for daily or
weekly load prediction, are not as effective for hourly predic-
tion as history-based features. On the other hand, SARMA,
a time series based model, is 30% more accurate than SVR,
LS-SVR, and ANN, both for peak and mean load prediction.
This is because SARMA can capture consumers’ routine and

stochastic activities, which are the most significant factors
influencing home load prediction. We plan to use our approach
to study peak load reduction in using energy storage.
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